Name:

Math 331 Exam 1

October 16, 2012

1) (10 points) Which of the following terms is *not* a primitive in Greenberg's axiomatic presentation of geometry? Circle your choices- there may be more than one!

- a) Point
- b) Congruent
- c) Angle
- d) Line
- e) Plane

- 2) a) (9 points) State the three axioms of incidence geometry.
 - b) (6 points) What does it mean to be a "model" for incidence geometry?

3) (15 points) Let $S = \{1, 2, 3, 4\}$. Define "points" to be the subsets $\{1, 2\}$, $\{1, 3\}$, and $\{1, 4\}$ of S. Define "lines" to be the subsets $\{1, 2, 3\}$, $\{1, 3, 4\}$, and $\{1, 2, 4\}$ of S. Let "incidence" be set containment. Check which of the axioms of incidence geometry hold and determine whether this is a model for incidence geometry.

4) a) (6 points) State two of the betweenness axioms.

b) (6 points) Define what it means for two points A and B to be on the "same side" of a given line l if A and B are not incident to l.

5) a) (4 points) Define what it means for two lines l and m to be parallel.

b) (8 points) State the Hyperbolic, Elliptic, and Euclidean Parallel Properties for a geometry.

6) (12 points) Let $S = \{1, 2, 3, 4\}$. Define "points" to be the subsets $\{1\}$, $\{2\}$, $\{3\}$, and $\{4\}$ of S. Define "lines" to be the subsets $\{1, 2\}$, $\{1, 3\}$, $\{1, 4\}$, $\{2, 3\}$, $\{2, 4\}$ and $\{3, 4\}$ of S. Let "incidence" be set containment. Which, if any, of the Hyperbolic, Euclidean, or Elliptic parallel properties hold for the model? Show work to support your assertions.

- 7) a) (8 points) State two of the congruence axioms.
 - b) (6 points) If A, B, C, and D are points, define what AB < CD means.

8) (20 points) If A, B, C, D, E, and F are points with AB > CD and $CD \cong EF$, then AB > EF. You may employ the following result: If P, R, X and Z are points and $PR \cong XZ$, then if P * Q * R, there exists a unique Y, X * Y * Z and $PQ \cong XY$.