## Math 227 Assignment 1

## Due Thursday, January 15

1) (3 points) For ONE TIME ONLY: solve the system of linear equations

$$
\begin{aligned}
& 22 x-3 y=-15 \\
& -4 x+17 y=32
\end{aligned}
$$

BY HAND for $x$ and $y$. You may convert the system to a matrix first, but the calculations should be yours, not a computer's.
2) Solve the system of linear equations

$$
\begin{gathered}
2 x-3 y+z=10 \\
-9 x+3 y+4 z=2 \\
6 x-7 y-4 z=8
\end{gathered}
$$

by
a) (2 points) writing down an augmented matrix that corresponds to the equations and then
b) (2 points) solving the system by putting the matrix in row-reduced echelon form and then reading off the solutions.
3) From exercise 33 in section 1.2, an interpolating polynomial for a set of points is a polynomial whose graph passes through every point in the set.
a) (2 points) Find a quadratic interpolating polynomial $a x^{2}+b x+c$ for the points $(1,2),(2,3)$, and $(3,9)$; that is, find $a, b$, and $c$ with

$$
\begin{aligned}
& c+b \cdot 1+a \cdot(1)^{2}=2 \\
& c+b \cdot 2+a \cdot(2)^{2}=3 \\
& c+b \cdot 3+a \cdot(3)^{2}=9
\end{aligned}
$$

by finding an augmented matrix that describes the system of linear equations, then putting the matrix in row-reduced echelon form.
b) (3 points) Show that through any 3 points $\left(1, y_{1}\right),\left(2, y_{2}\right)$, and $\left(3, y_{3}\right)$, there is an interpolating polynomial of degree no more than two. Hint: Wolfram Alpha can do this problem.
c) (4 points) When is there an interpolating polynomial through the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ ? When is there a quadratic interpolating polynomial through the points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and $\left(x_{3}, y_{3}\right)$ ? Hint: Wolfram Alpha can also do this problem, but you'll have to interpret the answer!
4) (3 points) Is it possible for a system of linear equations with more equations than unknowns to have a unique solution? What about fewer equations than unknowns? If your answer to either question is "yes," provide an example.
5) a) (3 points) Let

$$
v_{1}=\left[\begin{array}{l}
0 \\
1 \\
4
\end{array}\right], v_{2}=\left[\begin{array}{c}
-4 \\
-5 \\
7
\end{array}\right], v_{3}=\left[\begin{array}{c}
14 \\
10 \\
8
\end{array}\right], b=\left[\begin{array}{c}
16 \\
18 \\
19
\end{array}\right] .
$$

Show that $b$ is in $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ by
i) writing down a system of linear equations that describes when $b$ is in $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$,
ii) producing an augmented matrix for the system in a), then
iii) solving the system by putting the matrix in row-reduced echelon form and reading off the solutions.
b) (3 points) Let $v_{1}, v_{2}$, and $v_{3}$ be three nonzero vectors in $\mathbb{R}^{3}$. Suppose $v_{2}$ is not a scalar multiple of either $v_{1}$ or $v_{3}$ and $v_{3}$ is not a scalar multiple of either $v_{1}$ or $v_{2}$. Does it follow that every vector in $\mathbb{R}^{3}$ is in $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ ?

