Math 227 Assignment 2

Due Thursday, January 22

1) More on span:
a) (2 points) Let

$$
v_{1}=\left[\begin{array}{c}
4 \\
-8 \\
9 \\
6
\end{array}\right], v_{2}=\left[\begin{array}{c}
0 \\
5 \\
11 \\
-6
\end{array}\right], \text { and } v_{3}=\left[\begin{array}{c}
12 \\
2 \\
-4 \\
-7
\end{array}\right]
$$

Show that $v=\left[\begin{array}{c}128 \\ -11 \\ -55 \\ -40\end{array}\right]$ is in $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}\right\}$ by writing down an appropriate matrix and row-reducing it.
b) (3 points) Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \text { and } v_{2}=\left[\begin{array}{c}
-4 \\
0 \\
6 \\
7
\end{array}\right]
$$

Find a vector v in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ that is neither a scalar multiple of v_{1} nor a scalar multiple of v_{2}. Then find a vector v that is NOT in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ by writing down an appropriate matrix and row reducing it.
c) (4 points) Let v_{1}, v_{2}, v_{3}, and v_{4} be vectors in \mathbb{R}^{4}. Suppose v_{1} is not a scalar multiple of v_{2}, v_{3} is not a scalar multiple of v_{4}, and that $\operatorname{span}\left\{v_{1}, v_{2}\right\} \neq$ $\operatorname{span}\left\{v_{3}, v_{4}\right\}$. Show, via a choice of vectors for v_{1}, v_{2}, v_{3}, and v_{4}, that $\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ need not equal \mathbb{R}^{4} by writing down an appropriate matrix and row-reducing it.
2) Balance each chemical equation by i) writing down an augmented matrix through which the solution can be obtained and then ii) row-reducing the matrix and finding the solution.
a) (3 points)
$\mathrm{C}_{2} \mathrm{H}_{6}$ (Ethane) $+\mathrm{O}_{2}$ (Oxygen) $\rightarrow \mathrm{CO}_{2}$ (Carbon Dioxide) $+\mathrm{H}_{2} \mathrm{O}$ (Water)
b) (3 points)

$$
\begin{aligned}
& \left.\mathrm{AgNO}_{3}(\text { Silver Nitrate })+\mathrm{K}_{3} \mathrm{PO}_{4} \text { (Potassium Phosphate }\right) \\
\rightarrow & \mathrm{Ag}_{3} \mathrm{PO}_{4}(\text { Potassium Nitrate })+\mathrm{KNO}_{3} \text { (Silver Phosphate) } .
\end{aligned}
$$

3) Consider the system of linear equations

$$
\begin{gathered}
3 x-8 y+z=4 \\
-20 x-5 y-6 z=2 .
\end{gathered}
$$

Find all solutions to the system by
a) (2 points) Finding a single solution by setting one of the variables x, y, or z equal to zero, forming an augmented matrix for the resulting system, and then row-reducing the matrix for a unique solution in x, y, and z;
b) (2 points) solving the homogeneous system

$$
\begin{gathered}
3 x-8 y+z=0 \\
-20 x-5 y-6 z=0
\end{gathered}
$$

by forming the augmented matrix and then row-reducing the matrix for solutions of the homogeneous system;
c) (1 point) solving the system by adding your solutions from parts a) and b) together;
d) (2 points) checking your work by forming the augmented matrix of the original system, then row-reducing. Which method do you like better?
4) (3 points) Let A be an $m \times n$ matrix, x a vector in \mathbb{R}^{n}, and b a vector in \mathbb{R}^{m}. Show that if x_{1} in \mathbb{R}^{n} is a solution to $A x=b$ and x_{2} is a solution to $A x=\overrightarrow{0}$, then $x_{1}+x_{2}$ is a solution to $A x=b$.

