Math 227 Assignment 4

Due Thursday, February 19

1) a) (3 points) If
$$v = \begin{bmatrix} 9\\7\\-12 \end{bmatrix}$$
 and $w = \begin{bmatrix} -8\\11\\-2 \end{bmatrix}$, compute $\langle v, w \rangle$, $||v||_2$, $||w||_2$, and the angle between v and w .

b) (4 points) Find two non-parallel vectors v_1 and v_2 in \mathbb{R}^2 such that $||v_1||_2 = ||v_2||_2 = 1$ and whose angle with $\begin{bmatrix} 3\\4 \end{bmatrix}$ is 42°.

2) Let $A \in M_2(\mathbb{R})$.

a) (2 points) Show that if $A = aI_2$, then AB = BA for all $B \in M_2(\mathbb{R})$.

b) (4 points) For all $A \in M_2(\mathbb{R})$ where A is NOT a scalar multiple of I_2 , find $C \in M_2(\mathbb{R})$ with $AC \neq CA$ (*Hint:* use the matrix units.)

3) Find the inverse of the following matrices, then check that your answer is correct. Do part a) BY HAND.

a) (3 points)
$$A = \begin{bmatrix} -1 & 2 \\ 4 & 6 \end{bmatrix}$$
.
b) (2 points) $B = \begin{bmatrix} 6 & 8 & 4 \\ 5 & 1 & -10 \\ 11 & 9 & 9 \end{bmatrix}$.

4) Find a single 3×3 matrix that, in homogeneous coordinates,

- a) (1 point) rotates a 2-vector $\pi/6$ radians,
- b) (2 points) shifts a 2-vector down by 3 and right by 12,
- c) (1 points) scales a 2-vector up by 9, and finally
- d) (3 points) does parts a)-c) in order, starting with a).