Math 227 Assignment 4

Due Thursday, February 19

1) a) (3 points) If $v=\left[\begin{array}{c}9 \\ 7 \\ -12\end{array}\right]$ and $w=\left[\begin{array}{c}-8 \\ 11 \\ -2\end{array}\right]$, compute $\langle v, w\rangle,\|v\|_{2}$, $\|w\|_{2}$, and the angle between v and w.
b) (4 points) Find two non-parallel vectors v_{1} and v_{2} in \mathbb{R}^{2} such that $\left\|v_{1}\right\|_{2}=\left\|v_{2}\right\|_{2}=1$ and whose angle with $\left[\begin{array}{l}3 \\ 4\end{array}\right]$ is 42°.
2) Let $A \in M_{2}(\mathbb{R})$.
a) (2 points) Show that if $A=a I_{2}$, then $A B=B A$ for all $B \in M_{2}(\mathbb{R})$.
b) (4 points) For all $A \in M_{2}(\mathbb{R})$ where A is NOT a scalar multiple of I_{2}, find $C \in M_{2}(\mathbb{R})$ with $A C \neq C A$ (Hint: use the matrix units.)
3) Find the inverse of the following matrices, then check that your answer is correct. Do part a) BY HAND.
a) (3 points) $A=\left[\begin{array}{cc}-1 & 2 \\ 4 & 6\end{array}\right]$.
b) (2 points) $B=\left[\begin{array}{ccc}6 & 8 & 4 \\ 5 & 1 & -10 \\ 11 & 9 & 9\end{array}\right]$.
4) Find a single 3×3 matrix that, in homogeneous coordinates,
a) (1 point) rotates a 2 -vector $\pi / 6$ radians,
b) (2 points) shifts a 2 -vector down by 3 and right by 12 ,
c) (1 points) scales a 2 -vector up by 9 , and finally
d) (3 points) does parts a)-c) in order, starting with a).
