Math 227 Assignment 5

Due Thursday, March 5

1) a) (2 points) Write down the standard matrix for the reflection in \mathbb{R}^{2} about the line $y=5 x$.
b) (3 points) If, for $m \neq 0$,

$$
R=\frac{1}{1+m^{2}}\left[\begin{array}{cc}
m^{2}-1 & 2 m \\
2 m & 1-m^{2}
\end{array}\right]
$$

show that $R^{2}=I_{2}$.
2) Show that the following collections of vectors are subspaces of the indicated vector space.
a) (4 points) $\left\{\left.\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\} \subseteq M_{2}(\mathbb{R})$,
b) (4 points) $\{(x, y, z, w) \mid 14 x-9 y-20 z+w=0\} \subseteq \mathbb{R}^{4}$
c) (4 points) $\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid \lim _{n \rightarrow \infty} a_{n}=0\right\} \subseteq S$.
3) (3 points) Let $S=\{(x, y):|x|=|y|\} \subset \mathbb{R}^{2}$. Show that S is NOT a subspace of \mathbb{R}^{2}.
4) a) (2 points) If

$$
A=\left[\begin{array}{cccc}
1 & 4 & -1 & 5 \\
2 & 8 & -2 & 10 \\
16 & 7 & 4 & 20 \\
17 & 11 & 3 & 25
\end{array}\right]
$$

find two nonzero vectors in $\operatorname{Null}(A)$ that are not scalar multiples of eachother.
b) (3 points) If $T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R}), T(A)=A-A^{t}$, find the range and kernel of T.

