Math 227 Assignment 5

Due Thursday, March 15

1) Show that the following collections of vectors are subspaces of the indicated vector space.
a) (4 points) $\left\{\left.\left[\begin{array}{ll}a & b \\ b & c\end{array}\right] \right\rvert\, a, b, c \in \mathbb{R}\right\} \subseteq M_{2}(\mathbb{R})$,
b) (4 points) $\{(x, y, z, w) \mid 14 x-9 y-20 z+w=0\} \subseteq \mathbb{R}^{4}$
c) (4 points) $\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid \lim _{n \rightarrow \infty} a_{n}=0\right\} \subseteq \mathscr{S}$ (the vector space of sequences of real numbers).
2) (3 points) Let $S=\{(x, y):|x|=|y|\} \subset \mathbb{R}^{2}$. Show that S is NOT a subspace of \mathbb{R}^{2}.
3) Given the points $(0,3),(-1,4),(-2,7)$ and $(3,1)$ in \mathbb{R}^{2}, find the best-fit quadratic to the points by
a) (4 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (2 points) Writing the problem as a matrix equation $A x=b$,
c) (2 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (2 points) Solving the system in c) and producing the polynomial.
