Math 227 Assignment 6

Due Thursday, March 26

1) (5 points) If V is an n-dimensional vector space with basis $\left\{b_{i}\right\}_{i=1}^{n}$, we constructed the linear map $T: V \rightarrow \mathbb{R}^{n}$ given by

$$
T\left(\sum_{i=1}^{n} a_{i} b_{i}\right)=\sum_{i=1}^{n} a_{i} e_{i}
$$

where a_{i} is a scalar for all $1 \leq i \leq n$ and $\left\{e_{i}\right\}_{i=1}^{n}$ is the standard basis for \mathbb{R}^{n}. We claimed that T is an isomorphism. Check that T is both one-to-one and onto.
2) a) (2 points) Let

$$
A=\left[\begin{array}{cc}
-5 & 7 \\
2 & -6
\end{array}\right] \text { and } B=\left[\begin{array}{cc}
3 & 6 \\
-4 & 12
\end{array}\right] .
$$

Compute $\operatorname{det}(A), \operatorname{det}(B)$, and $\operatorname{det}(A+B)$. Is it true that $\operatorname{det}(A)+\operatorname{det}(B)=$ $\operatorname{det}(A+B)$?
b) (3 points) Let $C \in M_{n}(\mathbb{R})$ and suppose C is invertible. Show that $\operatorname{det}\left(C^{-1}\right)=1 / \operatorname{det}(C)$. Do NOT use the definition, just use properties of the determinant and inverse!
3) For each of the following matrices, find all its eigenvalues, provide an associated eigenvector whose 2 -norm is equal to 5 , and check that $A x=\lambda x$ for each matrix A, eigenvalue λ, and associated eigenvector x you found. For part a) do the check BY HAND.
a) $(5$ points $)\left[\begin{array}{cc}1 & 4 \\ -2 & 8\end{array}\right]$
b) (6 points) $\left[\begin{array}{ccc}-4 & 0 & -4 \\ 3 & 2 & 5 \\ -1 & 4 & 3\end{array}\right]$
4) (4 points) Let \mathcal{S} is the space of sequences of real numbers and $T: \mathcal{S} \rightarrow \mathcal{S}$,

$$
T\left(\left(a_{n}\right)_{n=1}^{\infty}\right)=\left(0, a_{1}, a_{2}, a_{3}, \ldots\right)
$$

Show that T has no eigenvalues.

