Math 227 Assignment 6

Due Thursday, March 29

1) Find a basis \mathcal{B} for each of the following subspaces, then construct an orthonormal basis $\mathcal{O} \mathcal{N B}$ (you may use Wolfram Alpha). Check that each vector in \mathcal{B} is in $\operatorname{span}(\mathcal{O} \mathcal{N B})$.
a) (3 points) $W_{1}=\operatorname{ran}(A) \subseteq \mathbb{R}^{3}$ where $A=\left[\begin{array}{ccc}-1 & 6 & 5 \\ 2 & -12 & 0 \\ 0 & 0 & 10\end{array}\right]$,
b) (4 points) $W_{2}=\{(x, y, z, w) \mid 14 x-9 y-20 z+w=0\} \subseteq \mathbb{R}^{4}$
2) Define $P: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, P\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x \\ 3 x\end{array}\right]$.
a) (2 points) Find a matrix that implements P.
b) (3 points) Show that $P^{2}=P$, but P is not an orthogonal projection.
3) (5 points) Check that $\left\{1, x, 2 x^{2}-1,4 x^{3}-3 x\right\}$ is a basis for $\mathbb{P}_{3}[x]$.
4) Let

$$
W=\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid \text { there is a } k \text { with } a_{n}=0 \text { for } n \geq k\right\} \subset \mathcal{S}
$$

where \mathcal{S} is the vector space of all sequences of real numbers. In words, W is the space of all sequences that are eventually constantly zero.
a) (2 points) Write down a nonzero sequence in W and a sequence not in W.
b) (4 points) Find a basis for W.
c) (2 points) Is your answer from b) a basis for \mathcal{S} ? Why or why not?

