Math 227 Assignment 7 Supplement

Due Friday, March 29

1) (5 points, $\# 9$, Section 4.8) Let

$$
x_{k}=2^{k}, w_{k}=5^{k} \cos \left(\frac{k \pi}{2}\right), z_{k}=5^{k} \sin \left(\frac{k \pi}{2}\right) .
$$

a) Show that the signals $\left(x_{k}\right),\left(w_{k}\right)$, and $\left(z_{k}\right)$ satisfy the homogeneous linear difference equation

$$
\begin{equation*}
y_{k+3}-2 y_{k+2}+25 y_{k+1}-50 y_{k}=0 . \tag{1}
\end{equation*}
$$

b) Do the signals from part a) form a basis for the space of signals satisfying equation (1)? Justify your assertion.

