Math 227 Assignment 8

Due Thursday, April 19

1) For each of the following matrices,
i) Find $A^{t} A$.
ii) Orthogonally diagonalize $A^{t} A$ and record the eigenvalues.
iii) Find the full singular value decomposition of A and record the singular values. Compare them to the eigenvalues of $A^{t} A$.
iv) Find the score matrix T and record the first principal component of each matrix.
a) (8 points) $\left[\begin{array}{cc}3 & 2 \\ 2 & 3 \\ 2 & -2\end{array}\right]$
b) (12 points) $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 0\end{array}\right]$
2) (5 points) Let A be an arbitrary 1×2 vector. Show that the nonzero singular value of A is equal to the 2-norm of A. (This hints at a more difficult fact to prove, which is that the nonzero eigenvalues of $A^{t} A$ are equal to the nonzero eigenvalues of $A A^{t}$).
