Fall 23 Exam 1

1) a) No, only 0,1 , oe infinitely many solutions
b) Either a line, plane, or 3-D space
c) (i) infinitely many
(ii) ane solution
(iii) no solution
2)

$$
y=a x^{2}+b x+c
$$

a) $(-1,4): \quad 4=a-b+c$

$$
\begin{aligned}
& (2,-5):-5=4 a+25+c \\
& (-6,7): 7=36 a-6 b+c
\end{aligned}
$$

b) Subtract $1^{\text {st }}$ two equations

$$
\begin{gathered}
a=-3 a-3 b \\
a+b=-3 \\
a=-3-b
\end{gathered}
$$

Subtract $2^{\text {-d }}$ too actions

$$
-12=-32 a+8 b
$$

Susstinue

$$
\begin{aligned}
& -12=-32(-3-5)+8 b \\
& -12=96+40 b
\end{aligned}
$$

$$
\begin{aligned}
-108 & =40 b \\
b & =-\frac{27}{10} \\
a & =-3-b=-3+\frac{27}{10}=-\frac{3}{10} \\
c & =4 \times b-4 \\
& =4-\frac{27}{10}+\frac{3}{10} \\
& =\frac{40}{10}-\frac{24}{10}=8 / 5
\end{aligned}
$$

C) $y=\frac{-3}{10} x^{2}-\frac{27}{10} x+8 / 5$
b) motrix

$$
\begin{gathered}
{\left[\begin{array}{cccc}
c & b & a & \\
1 & -1 & 1 & 1 \\
1 & 2 & 4 & -5 \\
1 & -6 & 36 & 7
\end{array}\right]} \\
2 \alpha-R 1 \\
\\
{\left[\begin{array}{cccc}
1 & -1 & 1 & 4 \\
0 & 3 & 3 & -9 \\
0 & -5 & 35 & 3
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 1 & 1 & 4
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
n 1+R 2 \\
{\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & -3 \\
0 & -5 & 35 & 3
\end{array}\right]} \\
R_{3}+5 \Omega 2 \\
R_{3} / 40 \\
0
\end{gathered}
$$

$$
\begin{aligned}
& R 2-23 \\
& {\left[\begin{array}{cccc}
1 & 0 & 2 & 1 \\
0 & 1 & 0 & -27 / 10 \\
0 & 0 & 1 & -3 / 10
\end{array}\right]} \\
& R 1-2 R 3 \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 8 / 5 \\
0 & 1 & 0 & -27 / 10 \\
0 & 0 & 1 & -31 / 0
\end{array}\right]}
\end{aligned}
$$

3) a) $\vec{v}+\vec{\omega}=\left[\begin{array}{c}52 \\ -30 \\ 40\end{array}\right]$
b)

$$
\begin{aligned}
& c \vec{v}+d \vec{\omega}=\vec{t} \\
& c\left[\begin{array}{c}
42 \\
-5 \\
0
\end{array}\right]+d\left[\begin{array}{c}
10 \\
-25 \\
40
\end{array}\right]=\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right] \\
& 40 d=1 \\
& d=1 / 40 \\
&-5 c-25 d=0 \\
& c+5 d=0 \\
& c+\frac{1}{8}=0 \\
& c=-1 / 8 \\
&-\frac{1}{8} \cdot 42+\frac{1}{40} \cdot 10 \\
&=-\frac{21}{4}+\frac{1}{4}=\frac{-20}{4}=51
\end{aligned}
$$

c) $Y_{e s}$ - since $\vec{t} \in \operatorname{span}(\vec{r}, \vec{v})$,

$$
\operatorname{span}(\vec{t}, \vec{v}, \vec{v})=\operatorname{span}(\vec{v}, \vec{v}) .
$$

Since \vec{v} and \vec{w} archit multiples, their span is a plane, not all of 3D space
4) No. Let $S=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}, T=\left\{\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right] ?\right.$

$$
\begin{gathered}
\text { Then } \operatorname{spa}(S)=\operatorname{spa}(7) \text {, but } \\
{\left[\begin{array}{l}
1 \\
0
\end{array}\right] \pm\left[\begin{array}{l}
2 \\
0
\end{array}\right],}
\end{gathered}
$$

So this isis tore.

