Name:

# Math 227 Exam 1 

February 6, 2013

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or $\pi$ into decimal approximations; just leave them as they are.

1) (2 points each) True/False. If the sentence is false, correct the error. No justification is necessary.
a) The transpose $A^{t}$ of a matrix $A$ is only defined for $n \times n$ matrices.
b) If a system of linear equations has two different solutions, then it has infinitely many solutions.
c) If none of the vectors $v_{1}, v_{2}$, and $v_{3}$ are multiples of one of the other vectors, then it is always true that $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent.
d) For a vector $v$ in $\mathbb{R}^{n},\|v\|_{2}=v \cdot v$.
e) If $A$ is a $2 \times 3$ matrix and $B$ is a $5 \times 3$ matrix, then the matrix product $A B$ makes sense.
2) Aluminum $(A l)$ combines with oxygen $(O)$ to produce aluminum oxide $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$ via the equation

$$
\mathrm{Al}+\mathrm{O}_{2} \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3} .
$$

a) (10 points) Determine a system of linear equations (or a matrix) that balances the equation.
b) (10 points) Balance the equation. Note: If you can do this without using part a), you will get full credit for the entire problem.
3) Let $A=\left[\begin{array}{cc}3 & 2 \\ 0 & 1 \\ -1 & 6\end{array}\right]$ and $B=\left[\begin{array}{ccc}-5 & -10 & 4 \\ 12 & 9 & -8\end{array}\right]$.
a) (8 points) Compute the matrix product $A B$ and find $(A B)^{t}$.
b) (10 points) Compute $A^{t}, B^{t}$, and $B^{t} A^{t}$.
c) (2 points) Compare your answers for $(A B)^{t}$ and $B^{t} A^{t}$. What do you find?
4) Consider the following electrical circuit:

a) (4 points) Find the edge-node incidence matrix $A$.
b) (4 points) Determine the resistance matrix $R$.
c) (10 points) Set up a matrix equation for finding the currents $I_{1}$ and $I_{2}$ and the potential differences between $v_{1}$ and $v_{2}$.
d) (8 points) Find the currents and potential differences.
5) a) (6 points) If $v_{1}, v_{2}, \ldots, v_{n}, v$ are vectors in $\mathbb{R}^{m}$, define what it means for $v$ to be in $\operatorname{Span}\left\{v_{1} . v_{2}, \ldots, v_{n}\right\}$.
b) (8 points) Let

$$
v_{1}=\left[\begin{array}{c}
-1 \\
1 \\
2
\end{array}\right], v_{2}=\left[\begin{array}{c}
3 \\
10 \\
-4
\end{array}\right], v_{3}=\left[\begin{array}{c}
9 \\
-8 \\
15
\end{array}\right] \text { and } v=\left[\begin{array}{c}
39 \\
-48 \\
52
\end{array}\right]
$$

Show that $v$ is in $\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$.
b) (10 points) For all nonzero vectors $w_{1}, w_{2}$ and $w_{3}$ in $\mathbb{R}^{2}$ with $w_{3}$ orthogonal to both $w_{1}$ and $w_{2}$, show that $w_{1}+w_{3}$ is linearly independent of $w_{2}$.

BONUS: (10 points) Let $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. For all $2 \times 2$ matrices $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $a d-b c \neq 0$, the vectors $A e_{1}$ and $A e_{2}$ determine a parallelogram. Find the area of the parallelogram, with work to support your assertion.

