Math 227 Exam 1

February 6, 2023

Directions:

- 1. WRITE YOUR NAME ON THIS TEST!
- 2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
- 3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
- 4. If you have a question, raise your hand or come up and ask me.

1) a) Can you have just 892 solutions to a system of linear equations? Why or why not?

b) Write down the 3×3 matrix $A = (A_{i,j})$ where

$$A_{i,j} = (3j - 4)^i$$

for all $1 \le i, j \le 3$.

2) Let

$$A = \begin{bmatrix} 5 & -9 \\ \sqrt{2} & -8 \end{bmatrix} , \quad B = \begin{bmatrix} 8 & 3 \\ 2 & -4 \\ 3 & 1 \\ -12 & 10 \end{bmatrix} , \quad C = \begin{bmatrix} 1 & 4 \\ 2 & 0 \\ 11 & -5 \end{bmatrix} \quad \vec{v} = \begin{bmatrix} 3 \\ -6 \\ 1 \end{bmatrix} .$$

(a) What are the dimensions of the matrices A, B, C, and \vec{v} ?

- (b) Determine whether the following computations can be effected. If the computation can be done, give the dimensions of the resulting output. If the computation cannot be done, merely say so.
 - (i) $B^t \cdot \vec{v}$
 - (ii) $\vec{v}^t \cdot C$
 - (iii) $A^t \cdot C^t$
 - (iv) $C \cdot B^t$

- 3) Find a QUADRATIC interpolating polynomial through the points (1,3), (-4,-7) and (-5,-2) by
- a) writing down a system of linear equations that determines the coefficients of the polynomial, then
- b) solving the resulting system of equations BY HAND, using any manner at your disposal and SHOWING YOUR WORK, and finally
 - c) writing down the polynomial.

4) For vectors

$$\vec{v} = \begin{bmatrix} -42 \\ -42 \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} -42 \\ 42 \end{bmatrix}$,

- a) What geometric object represents span(\vec{v})?
- b) Write down a vector in span (\vec{v}, \vec{w}) that is neither a multiple of \vec{v} nor a multiple of \vec{w} . No justification is necessary.
 - c) Find a vector of length 5 whose angle between both \vec{v} and \vec{w} is 45°.
 - d) Is there a vector in \mathbb{R}^2 that is NOT in span (\vec{v}, \vec{w}) ? Justify your answer.

- 5) Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix.
 - a) If $A^2 = A$, show a + d is either 0, 1, or 2.
 - b) If $A^t A \vec{v} = \vec{0}$ for some vector \vec{v} , show that $A \vec{v} = \vec{0}$.