Name:

Math 227 Exam 2

November 4, 2021

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let V, W be a vector spaces. Let $T: V \rightarrow W$ be a linear function.
a) (4 points) What are the two operations on V, i.e., what makes a vector space?
b) (3 points) Let $V=\mathcal{S}(\mathbb{R})$. What are the vectors?
c) (3 points) What are the possible geometric descriptions of subspaces of \mathbb{R}^{2} ?
d) (4 points) What are the possible geometric descriptions of subspaces of \mathbb{R}^{3} ?
e) (4 points) If A is an $n \times n$ matrix and A is invertible, what do you know about $\operatorname{det}(A)$?
2) Find a single 3×3 matrix that, in homogeneous coordinates,
a) (8 points) rotates a 2 -vector by $3 \pi / 2$ radians clockwise,
b) (6 points) scales the x-coordinate of a 2 -vector up by a factor of 42 and scales the y-coordinate down by a factor of 3 .
c) (7 points) shifts a 2 -vector down 4 units and left 10 units,
d) (6 points) does a)-c) in order, starting with a).
3) a) (2 points, Fill-in-the-blank) Every linear function from \mathbb{R}^{n} to \mathbb{R}^{m} is given by a \qquad _.
b) (13 points) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$,

$$
T\left(\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]\right)=\left[\begin{array}{c}
z-3 x+2 y \\
x+z \\
0
\end{array}\right]
$$

Show that T is linear.
4) (20 points) Let

$$
W=\{f \in \mathcal{F}(\mathbb{R}) \mid(f(12)-f(7)) \in \mathbb{R}\}
$$

Show that W is a subspace of $\mathcal{F}(\mathbb{R})$.
5) (20 points) Let

$$
S=\left\{\left.\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \in \mathbb{R}^{3} \right\rvert\,(x-z)^{4}=(y-z)^{4}\right\}
$$

Show that S is NOT a subspace of \mathbb{R}^{3}.

