Name:

Math 227 Exam 2

November 7, 2018

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Wolfram Alpha or a similar program may be used for all computational problems.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let V be a vector space.
a) (4 points) What are the two operations on V, i.e., what makes a vector space?
b) (2 points) If $V=M_{3}(\mathbb{R})$, what are the vectors?
c) (2 points) If $V=\mathbb{P}[x]$, what are the vectors?
d) (2 points) If v and w are column vectors in \mathbb{R}^{n}, what is the difference between the quantities $v \cdot w$ and $v^{t} w$?
e) (3 points) Fill in the blank: If $A, B \in M_{n}(\mathbb{R}),(A B)^{t}=$ \qquad .
2) Find a single 3×3 matrix that, in homogeneous coordinates,
a) (4 points) rotates a 2 -vector by $2 \pi / 3$ radians counterclockwise,
b) (8 points) scales a 2 -vector down by a factor of 8 ,
c) (6 points) shifts a 2 -vector up 10 units and right 3 units,
d) (6 points) does a)-c) in order, starting with a).
3) Let T be the linear transformation from $\mathbb{R}^{4} \rightarrow \mathbb{R}$ given by

$$
T\left(\left[\begin{array}{l}
x \\
y \\
w \\
z
\end{array}\right]\right)=13 x-52 y-18 z+4 w
$$

a) (10 points) Show that T is linear.
b) (7 points) Calculate the orthogonal projection onto $\operatorname{Ran}(T)$.
4) Given the points $(-1,3),(8,7),(6,-2)$ and $(-4,-4)$ in \mathbb{R}^{2}, find the bestfit quadratic to the points by
a) (12 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (6 points) Writing the problem as a matrix equation $A x=b$,
c) (6 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (4 points) Solving the system in c) and producing the polynomial.
5) a) (10 points) Let

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2^{x+y+z}=1\right\} .
$$

Show that W is a subspace of \mathbb{R}^{3}.
b) (8 points) Let $S=\left\{A \in M_{2}(\mathbb{R}) \mid \operatorname{det}(A) \geq 0\right\}$. Show that S is NOT a subspace of $M_{2}(\mathbb{R})$.

BONUS: (10 points) Let V and W be vector spaces and $T: V \rightarrow W$ a linear transformation. Show that $\operatorname{Ran}(T)$ is a subspace of W.

