Name:

Math 227 Exam 2

November 7, 2018

Directions:

- 1. WRITE YOUR NAME ON THIS TEST!
- 2. Wolfram Alpha or a similar program may be used for all computational problems.
- 3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
- 4. If you have a question, raise your hand or come up and ask me.

1) Let V be a vector space.

a) (4 points) What are the two operations on V, i.e., what makes a vector space?

b) (2 points) If $V = M_3(\mathbb{R})$, what are the vectors?

c) (2 points) If $V = \mathbb{P}[x]$, what are the vectors?

d) (2 points) If v and w are column vectors in \mathbb{R}^n , what is the difference between the quantities $v \cdot w$ and $v^t w$?

e) (3 points) Fill in the blank: If $A, B \in M_n(\mathbb{R}), (AB)^t =$ ______.

- 2) Find a single 3×3 matrix that, in homogeneous coordinates,
 - a) (4 points) rotates a 2-vector by $2\pi/3$ radians counterclockwise,
 - b) (8 points) scales a 2-vector down by a factor of 8,
 - c) (6 points) shifts a 2-vector up 10 units and right 3 units,
 - d) (6 points) does a)-c) in order, starting with a).

3) Let T be the linear transformation from $\mathbb{R}^4 \to \mathbb{R}$ given by

$$T\left(\left[\begin{array}{c}x\\y\\w\\z\end{array}\right]\right) = 13x - 52y - 18z + 4w.$$

- a) (10 points) Show that T is linear.
- b) (7 points) Calculate the orthogonal projection onto $\operatorname{Ran}(T)$.

4) Given the points (-1,3), (8,7), (6,-2) and (-4,-4) in \mathbb{R}^2 , find the best-fit quadratic to the points by

a) (12 points) Finding a system of linear equations that represents a "solution" to the problem,

b) (6 points) Writing the problem as a matrix equation Ax = b,

c) (6 points) Finding the system $A^tAx = A^tb$, computing both A^tA and A^tb ,

d) (4 points) Solving the system in c) and producing the polynomial.

5) a) (10 points) Let

$$W = \{ (x, y, z) \in \mathbb{R}^3 \mid 2^{x+y+z} = 1 \}.$$

Show that W is a subspace of \mathbb{R}^3 .

b) (8 points) Let $S = \{A \in M_2(\mathbb{R}) \mid \det(A) \ge 0\}$. Show that S is NOT a subspace of $M_2(\mathbb{R})$.

BONUS: (10 points) Let V and W be vector spaces and $T: V \to W$ a linear transformation. Show that $\operatorname{Ran}(T)$ is a subspace of W.