Name:

Math 227 Exam 2

November 5, 2019

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Wolfram Alpha or a similar program may be used for all computational problems.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let V be a vector space.
a) (4 points) What are the two operations on V, i.e., what makes a vector space?
b) (3 points) If $V=M_{2 \times 3}(\mathbb{R})$, what are the vectors?
c) (3 points) If $A \in M_{2 \times 3}(\mathbb{R}), B \in M_{4 \times 2}(\mathbb{R})$, only one of $A B$ or $B A$ makes sense. Which is it, and what are the dimensions of the resulting product?
d) (3 points) Fill in the blank: If $A \in M_{n}(\mathbb{R})$ is a non-invertible matrix, then
\qquad

$$
\operatorname{det}(A)
$$

e) (3 points) Fill in the blank: If $A, B \in M_{n}(\mathbb{R})$ are invertible,

$$
(A B)^{-1}=
$$

2) Find a single 3×3 matrix that, in homogeneous coordinates,
a) (8 points) rotates a 2 -vector by $2 \pi / 3$ radians counterclockwise,
b) (4 points) scales a 2 -vector down by a factor of 8 ,
c) (6 points) shifts a 2 -vector up 10 units and right 3 units,
d) (6 points) does a)-c) in order, starting with a).
3) a) (10 points) For ALL $n \times n$ matrices A such that A^{3} is invertible, show that A is also invertible.
b) (12 points) Via a choice of A and B in $M_{2}(\mathbb{R})$, show that, in general,

$$
(A+B)^{2} \neq A^{2}+2 A B+B^{2}
$$

4) (20 points) Let

$$
W=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}(\mathbb{R}) \right\rvert\, b+d=a-c\right\} .
$$

Show that W is a subspace of $M_{2}(\mathbb{R})$.
5) (18 points) Let

$$
S=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid \sqrt{x^{2}+y^{2}}=\sqrt{z^{2}+w^{2}}\right\}
$$

Show that S is NOT a subspace of \mathbb{R}^{4}.

