Name:

Math 227 Exam 2

October 25, 2023

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let V, W be vector spaces.
a) What are the two operations on V, i.e., what makes a vector space?
b) If $V=M_{4}(\mathbb{R})$, what are the vectors in V ?
c) If an $n \times n$ matrix A does not have its determinant equal to zero, what does this tell you regarding the invertibility of A ?
d) If A is a 2×3 matrix, B is a 3×1 matrix, and C is a 3×2 matrix, write down whether the following operations are possible or not. No justification is necessary.
i) $A \cdot B$
ii) $C^{t} \cdot B$
iii) $A+C$
iv) $A+C^{t}$
2) Find a single 3×3 matrix that, in homogeneous coordinates,
a) scales the x-coordinate of a 2 -vector down by a factor of 8 and scales the y-coordinate up by a factor of 7 ,
b) rotates a 2 -vector by $2 \pi / 3$ radians clockwise,
c) shifts a 2 -vector up 10 units and right 6 units.
d) If A, B, and C are the matrices from parts a), b), and c), respectively, in what order do you write the product of A, B, and C if you first scale, then shift, then rotate?
3) a) Calculate the area of the parallelogram with vertices $(0,0),(-3,1)$, $(4,2)$, and $(1,3)$. Be sure to draw a picture!
b) If $\vec{v}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, find a vector of length 5 whose angle with \vec{v} is 30°.
4) Recall that \mathcal{S} is the vector space of all sequences of real numbers. Let

$$
W=\left\{\left(a_{n}\right) \in \mathcal{S}: \sum_{n=1}^{\infty} a_{n}=0\right\}
$$

a) Write down two sequences in W.
b) Write down a sequences that is NOT in W (if possible).
c) Show that W is a subspace of \mathcal{S}.

