Name:

Math 227 Exam 2

March 18, 2013

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) (2 points each) True/False. If the sentence is false, correct the error. No justification is necessary.
a) The dimension of $\operatorname{Col}(A)$ is equal to $\operatorname{Rank}(A)$ for all matrices A.
b) If a vector space V has dimension n, then V can have a basis with less than n vectors in it.
c) Every linear transformation between finite-dimensional vector spaces may be written as a matrix.
d) If an $n \times n$ matrix A is invertible, then $\operatorname{det}(A)=\frac{1}{\operatorname{det}\left(A^{-1}\right)}$.
e) The vector space of continuous functions from \mathbb{R} to \mathbb{R} is finite dimensional.
2) Find the matrix of the linear transformations on \mathbb{R}^{3} that, in homogeneous coordinates
a) (4 points) scales a 2 -vector down by a factor of 2
b) (5 points) shifts a 2 -vector up 7 units and left 6 units
c) (6 points) rotates a 2 -vector by $\pi / 4$ radians counterclockwise
d) (8 points) first scales a vector down by a factor of 2 , then shifts the vector up 7 units and left 6 units, then rotates the vector by $\pi / 4$ radians counterclockwise.
3) Let $A=\left[\begin{array}{cccc}0 & 4 & -2 & 4 \\ -4 & -10 & 1 & -6 \\ 7 & -4 & 9 & -11\end{array}\right]$
a) (7 points) Define the nullspace $\operatorname{Nul}(A)$ and the range space $\operatorname{Ran}(A)$.
b) (10 points) Calculate $\operatorname{Ran}(A)$ and find a basis for it.
c) (6 points) State the Rank Theorem and use it to find the dimension of $N u l(A)$ without doing any matrix operations.
4) Let $A=\left[\begin{array}{ccc}3 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 6 & -1\end{array}\right]$.
a) (4 points) Find the determinant of A. Is A invertible?
b) (9 points) If A is invertible, calculate the inverse. If A is not invertible, find a basis for $N u l(A)$.
c) (6 points) Find the matrix of A with respect to the basis $\left\{b_{1}, b_{2}, b_{3}\right\}$ where

$$
b_{1}=\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right], b_{2}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \text { and } b_{3}=\left[\begin{array}{c}
-1 \\
1 \\
-1
\end{array}\right]
$$

5) Let $w=\left[\begin{array}{c}4 \\ -6 \\ 17\end{array}\right]$ and define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $T(v)=v \cdot w$, the dot product of v with w.
a) (7 points) Check that T is a linear transformation.
b) (8 points) Let $W \subseteq \mathbb{R}^{3}$ be the subset of all vectors v satisfying $3 v \cdot w-$ $7 w \cdot v=0$. Check that W is a subspace of \mathbb{R}^{3}.
c) (10 points) Find a linear transformation $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ with $\operatorname{Ran}(S)=$ W where W is the subspace from part b). You don't have to check that S is linear, just find it.

BONUS: (10 points) For all matrices P in $M_{n}(\mathbb{R})$ satisfying $P \cdot P=P$, if $T=I_{n}-2 P$, show that T is always invertible.

