Name:

Math 227 Exam 2

March 18, 2013

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. DO NOT convert irrational numbers such as $\sqrt{3}$ or π into decimal approximations; just leave them as they are.

1) (2 points each) True/False. If the sentence is false, correct the error. No justification is necessary.

a) The dimension of Col(A) is equal to Rank(A) for all matrices A.

b) If a vector space V has dimension n, then V can have a basis with less than n vectors in it.

c) Every linear transformation between finite-dimensional vector spaces may be written as a matrix.

d) If an $n \times n$ matrix A is invertible, then $det(A) = \frac{1}{det(A^{-1})}$.

e) The vector space of continuous functions from \mathbb{R} to \mathbb{R} is finite dimensional.

2) Find the matrix of the linear transformations on \mathbb{R}^3 that, in homogeneous coordinates

- a) (4 points) scales a 2-vector down by a factor of 2
- b) (5 points) shifts a 2-vector up 7 units and left 6 units
- c) (6 points) rotates a 2-vector by $\pi/4$ radians counterclockwise

d) (8 points) first scales a vector down by a factor of 2, then shifts the vector up 7 units and left 6 units, then rotates the vector by $\pi/4$ radians counterclockwise.

3) Let
$$A = \begin{bmatrix} 0 & 4 & -2 & 4 \\ -4 & -10 & 1 & -6 \\ 7 & -4 & 9 & -11 \end{bmatrix}$$

a) (7 points) Define the nullspace Nul(A) and the range space Ran(A).

b) (10 points) Calculate Ran(A) and find a basis for it.

c) (6 points) State the Rank Theorem and use it to find the dimension of Nul(A) without doing any matrix operations.

4) Let
$$A = \begin{bmatrix} 3 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 6 & -1 \end{bmatrix}$$
.

a) (4 points) Find the determinant of A. Is A invertible?

b) (9 points) If A is invertible, calculate the inverse. If A is not invertible, find a basis for Nul(A).

c) (6 points) Find the matrix of A with respect to the basis $\{b_1, b_2, b_3\}$ where

$$b_1 = \begin{bmatrix} 1\\1\\-1 \end{bmatrix}, b_2 = \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \text{ and } b_3 = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}$$

5) Let $w = \begin{bmatrix} 4 \\ -6 \\ 17 \end{bmatrix}$ and define $T : \mathbb{R}^3 \to \mathbb{R}$ by $T(v) = v \cdot w$, the dot product of v with w.

a) (7 points) Check that T is a linear transformation.

b) (8 points) Let $W \subseteq \mathbb{R}^3$ be the subset of all vectors v satisfying $3v \cdot w - 7w \cdot v = 0$. Check that W is a subspace of \mathbb{R}^3 .

c) (10 points) Find a linear transformation $S : \mathbb{R}^3 \to \mathbb{R}^3$ with Ran(S) = W where W is the subspace from part b). You don't have to check that S is linear, just find it.

BONUS: (10 points) For all matrices P in $M_n(\mathbb{R})$ satisfying $P \cdot P = P$, if $T = I_n - 2P$, show that T is always invertible.