Name:

Math 227 Exam 2

March 12, 2015

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Decimal approximations, accurate to four decimal places, are acceptable.

1) Find the matrix of the linear transformations on \mathbb{R}^{3} that, in homogeneous coordinates,
a) (3 points) scales the x-coordinate of a 2 -vector down by 3 and the y-coordinate up by 7 .
b) (5 points) shifts a 2 -vector up 13 units and left 8 units
c) (6 points) rotates a 2 -vector by $2 \pi / 3$ radians counterclockwise
d) (6 points) scales the x-coordinate of a 2 -vector down by 3 and the y coordinate up by 7 , then rotates the vector by $2 \pi / 3$ radians counterclockwise, and finally shifts the vector up 13 units and left 8 units.
2) a) (12 points) Let $W=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x+w=y+z\right\}$. Show that W is a subspace of \mathbb{R}^{4}.
b) (10 points) Let $\mathcal{S}=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(\mathbb{R}) \right\rvert\, a d=0\right\}$. Show that \mathcal{S} is NOT a subspace of $M_{2}(\mathbb{R})$.
3) Given the signals $x_{k}=1, w_{k}=(1 / 2)^{k}$, and $w_{k}=k$ and the homogeneous linear difference equation

$$
\begin{equation*}
2 y_{k+3}-3 y_{k+2}+y_{k}=0 \tag{1}
\end{equation*}
$$

a) (12 points) check that $\left(x_{k}\right)_{k \in \mathbb{Z}},\left(w_{k}\right)_{k \in \mathbb{Z}}$, and $\left(z_{k}\right)_{k \in \mathbb{Z}}$ all satisfy equation (1);
b) (8 points) determine the Casorati matrix associated to the signals $\left(x_{k}\right)_{k \in \mathbb{Z}},\left(w_{k}\right)_{k \in \mathbb{Z}}$, and $\left(z_{k}\right)_{k \in \mathbb{Z}}$.
c) (10 points) Is $\left\{\left(x_{k}\right)_{k \in \mathbb{Z}},\left(w_{k}\right)_{k \in \mathbb{Z}},\left(z_{k}\right)_{k \in \mathbb{Z}}\right\}$ a basis for the subspace of all signals satisfying equation (1)? Justify your assertion.
4) a) (6 points) If

$$
A=\left[\begin{array}{cccc}
2 & 5 & -1 & 0 \\
3 & 6 & -1 & 1 \\
0 & -12 & 4 & 8 \\
-1 & 14 & -5 & -11
\end{array}\right]
$$

find two distinct nonzero vectors in the nullspace (kernel) of A and two distinct nonzero vectors in the column space (range) of A.
b) (12 points) Define $T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$,

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
\frac{a+d}{2} & 0 \\
0 & \frac{a+d}{2}
\end{array}\right] .
$$

Determine $\operatorname{ker}(T)$, with calculations to support your answer.

