Name:

Math 227 Exam 2

March 22, 2018

Directions:

- 1. WRITE YOUR NAME ON THIS TEST!
- 2. Wolfram Alpha or a similar program may be used for all computational problems.
- 3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
- 4. If you have a question, raise your hand or come up and ask me.

1) Find the matrix of the linear transformations on \mathbb{R}^3 that, in homogeneous coordinates,

- a) (4 points) scales a 2-vector up by a factor of 17,
- b) (8 points) shifts a 2-vector down 4 units and right 11 units,
- c) (6 points) rotates a 2-vector by $\pi/6$ radians clockwise,

d) (6 points) first shifts a 2-vector down 4 units and right 11 units, then rotates a 2-vector by $\pi/6$ radians clockwise, and finally scales a 2-vector up by a factor of 17.

2) Let T be the linear transformation from $\mathbb{R}^2 \to \mathbb{R}^3$ given by

$$T\left(\left[\begin{array}{c}x\\y\end{array}\right]\right) = \left[\begin{array}{c}y-x\\y+2x\\x+4y\end{array}\right].$$

- a) (7 points) Compute a matrix A that implements T.
- b) (7 points) Determine whether $A^t A$ is invertible or not.
- c) (7 points) Calculate the orthogonal projection onto $\operatorname{Ran}(T)$.

3) Given the points (0,6), (-1,2), (-5,7) and (3,4) in \mathbb{R}^2 , find the best-fit line to the points by

a) (12 points) Finding a system of linear equations that represents a "solution" to the problem,

b) (6 points) Writing the problem as a matrix equation Ax = b,

c) (6 points) Finding the system $A^tAx = A^tb$, computing both A^tA and A^tb ,

d) (7 points) Solving the system in c) and producing the polynomial.

4) a) (13 points) Let $W = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}) \mid a + d = 0 \right\}$. Show that W is a subspace of $M_2(\mathbb{R})$.

b) (11 points) Let $S = \{(x, y) \in \mathbb{R}^2 \mid y \ge 0\}$. Show that S is NOT a subspace of \mathbb{R}^2 .

BONUS: (10 points) Let \mathbb{P} be the vector space of all polynomials. Define $T: \mathbb{P} \to \mathbb{P}$ by 7

$$\Gamma(p(x)) = p'(x)$$

Determine $\ker(T)$, with proof.