Name:

Math 227 Exam 2

March 22, 2018

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Wolfram Alpha or a similar program may be used for all computational problems.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Find the matrix of the linear transformations on \mathbb{R}^{3} that, in homogeneous coordinates,
a) (4 points) scales a 2 -vector up by a factor of 17 ,
b) (8 points) shifts a 2 -vector down 4 units and right 11 units,
c) (6 points) rotates a 2 -vector by $\pi / 6$ radians clockwise,
d) (6 points) first shifts a 2 -vector down 4 units and right 11 units, then rotates a 2 -vector by $\pi / 6$ radians clockwise, and finally scales a 2 -vector up by a factor of 17 .
2) Let T be the linear transformation from $\mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
y-x \\
y+2 x \\
x+4 y
\end{array}\right]
$$

a) (7 points) Compute a matrix A that implements T.
b) (7 points) Determine whether $A^{t} A$ is invertible or not.
c) (7 points) Calculate the orthogonal projection onto $\operatorname{Ran}(T)$.
3) Given the points $(0,6),(-1,2),(-5,7)$ and $(3,4)$ in \mathbb{R}^{2}, find the best-fit line to the points by
a) (12 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (6 points) Writing the problem as a matrix equation $A x=b$,
c) (6 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (7 points) Solving the system in c) and producing the polynomial.
4) a) (13 points) Let $W=\left\{\left.\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(\mathbb{R}) \right\rvert\, a+d=0\right\}$. Show that W is a subspace of $M_{2}(\mathbb{R})$.
b) (11 points) Let $S=\left\{(x, y) \in \mathbb{R}^{2} \mid y \geq 0\right\}$. Show that S is NOT a subspace of \mathbb{R}^{2}.

BONUS: (10 points) Let \mathbb{P} be the vector space of all polynomials. Define $T: \mathbb{P} \rightarrow \mathbb{P}$ by

$$
T(p(x))=p^{\prime}(x)
$$

Determine $\operatorname{ker}(T)$, with proof.

