Name:

Math 227 Exam 2

March 12, 2020

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let V, W be a vector spaces. Let $T: V \rightarrow W$ be a linear function.
a) (4 points) What are the two operations on V, i.e., what makes a vector space?
b) (3 points) Let $V=\mathcal{F}(\mathbb{R})$. What are the vectors?
c) (2 points) Which vector space is $\operatorname{Ran}(T)$ a subspace of?
d) (2 points) Which vector space is $\operatorname{ker}(T)$ a subspace of?
2) Find a single 3×3 matrix that, in homogeneous coordinates,
a) (6 points) scales a 2 -vector up by a factor of 17 ,
b) (7 points) shifts a 2 -vector down 6 units and right 11 units,
c) (8 points) rotates a 2 -vector by $\pi / 4$ radians clockwise,
d) (6 points) does a)-c) in order, starting with a).
3) Let $T: \mathbb{R}^{5} \rightarrow \mathbb{R}^{2}$,

$$
T\left(\left[\begin{array}{l}
w \\
u \\
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
9 w+4 x-z \\
-12 y+13 z+u
\end{array}\right]
$$

a) (8 points) Show that T is linear.
b) (8 points) Find three nonzero, nonparallel vectors in $\operatorname{Ran}(T)$.
c) (8 points) Find a nonzero vector in $\operatorname{ker}(T)$.
4) (20 points) Let

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 42 z=19 x\right\} .
$$

Show that W is a subspace of \mathbb{R}^{3}.
5) (18 points) Let

$$
S=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \in M_{2}(\mathbb{R}) \right\rvert\,(a-b)(c-d)=0\right\}
$$

Show that S is NOT a subspace of $M_{2}(\mathbb{R})$.

