Name:

Math 227 Exam 2

March 16, 2023

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let V, W be vector spaces and let $T: V \rightarrow W$ be a linear operator.
a) What are the two operations on V, i.e., what makes a vector space?
b) Let $V=M_{4}(\mathbb{R})$. What are the vectors?
c) If an $n \times n$ matrix A has its determinant equal to zero, what does this tell you regarding the invertibility of A ?
d) Which vector space is $\operatorname{Ran}(T)$ a subspace of?
e) Which vector space is $\operatorname{ker}(T)$ a subspace of?
2) Find a single 3×3 matrix that, in homogeneous coordinates,
a) shifts a 2 -vector down 15 units and right 4 units,
b) scales the x-coordinate of a 2 -vector down by a factor of 7 and scales the y-coordinate down by a factor of 2 ,
c) rotates a 2 -vector by $11 \pi / 6$ radians counterclockwise,
d) If A, B, and C are the matrices from parts a), b), and c), respectively, in what order do you write the product of A, B, and C if you first rotate, then shift, then scale?
3) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
2 x+2 y \\
x-3 y
\end{array}\right]
$$

a) Find a matrix representation A for T.
b) Is A invertible? Why or why not?
c) Find the area of the parallelogram with vertices $(0,0),(2,1),(2,-3)$, and $(4,-2)$. Be sure to draw a picture!
4) Recall that \mathcal{S} is the vector space of all sequences of real numbers. Let $W \subseteq \mathcal{S}$,

$$
W=\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid a_{1}^{2}+a_{3}^{2}=0\right\}
$$

a) Write down two sequences in W.
b) Write down a sequence that is NOT in W (if possible).
c) Show that W is a subspace of \mathcal{S}.
5) Let $V=W=M_{2}(\mathbb{R})$ and define $T: V \rightarrow W$,

$$
T(A)=\frac{A+A^{t}}{2}
$$

where $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \in M_{2}(\mathbb{R})$.
a) Write down two nonzero vectors in $\operatorname{ker}(T)$.
b) Write down a nonzero vector in $\operatorname{Ran}(T)$.
c) Determine $\operatorname{ker}(T)$, with reasoning to support your assertion.

BONUS: (10 points) For every invertible matrix $A \in M_{n}(\mathbb{R})$, show that $\operatorname{Ran}(A)=\mathbb{R}^{n}$.

