Name:

Math 227 Exam 3

December 2, 2021

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let

$$
A=\left[\begin{array}{cc}
-29 & -18 \\
54 & 34
\end{array}\right]
$$

a) (11 points) Compute all eigenvalues of A BY HAND.
b) (8 points) Check that $\left[\begin{array}{c}-2 \\ 3\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ are eigenvectors corresponding to the eigenvalues you found in a) BY HAND.
2) Given the points $(1,-4),(-1,2),(2,3)$ and $(-4,7)$ in \mathbb{R}^{2}, find the best-fit LINE to the points by
a) (8 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (8 points) Writing the problem as a matrix equation $A x=b$,
c) (6 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (6 points) Solving the system in c) and producing the polynomial.
3) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$,

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]\right)=\left[\begin{array}{c}
12 x-4 z+w \\
4 x+5 y+6 z-16 w \\
8 z-6 w
\end{array}\right]
$$

a) (15 points) Determine a matrix representation A for T.
b) (5 points) Find four nonzero, nonparallel vectors in $\operatorname{Ran}(T)$. You do not have to show your work.
c) (5 points) Find a nonzero vector in $\operatorname{ker}(T)$.
4) Given the simplified link diagram between webpages P_{1}, P_{2}, and P_{3} described by

- P_{1} links to P_{2}
- P_{2} doesn't link to anything,
- P_{3} links to P_{1},
a) (5 points) Construct the link matrix A.
b) (6 points) Find the normalized matrix B.
c) (11 points) Calculate the PageRank matrix C, using $d=.85=17 / 20$.

4) (continued) d) (2 points) What number is the matrix C guaranteed to have as an eigenvalue?
e) (4 points) If an associated eigenvector v to the eigenvalue from d) is

$$
\left[\begin{array}{c}
740 \\
1029 \\
400
\end{array}\right]
$$

find the PageRank of P_{2}.

