Name:

# Math 227 Exam 3 

December 5, 2019

## Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Wolfram Alpha or a similar program may be used for all computational problems.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let

$$
A=\left[\begin{array}{cc}
14 & -9 \\
18 & -13
\end{array}\right]
$$

a) (11 points) Compute all eigenvalues of $A$ BY HAND.
b) (4 points) Find an associated eigenvector for each eigenvalue from a).
c) (8 points) Check that each vector from b) actually is an eigenvector BY HAND.
2) Given the points $(0,2),(-3,4),(5,8)$ and $(9,-16)$ in $\mathbb{R}^{2}$, find the best-fit quadratic to the points by
a) (10 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (9 points) Writing the problem as a matrix equation $A x=b$,
c) (4 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (4 points) Solving the system in c) and producing the polynomial.
3) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$,

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
8 x-y+5 z \\
-42 x+13 y-7 z
\end{array}\right]
$$

a) (9 points) Determine a matrix representation $A$ for $T$.
b) (5 points) Find four nonzero, nonparallel vectors in $\operatorname{Ran}(T)$.
c) (3 points) Find a nonzero vector in $\operatorname{ker}(T)$.
d) (8 points) Compute the orthogonal projection onto $\operatorname{ker}(T)$. You don't have to show it is an orthogonal projection, just find it.
4) (10 points) Let $V=\mathcal{F}(\mathbb{R})$, the functions from $\mathbb{R}$ to $\mathbb{R}$. Define $T: V \rightarrow V$
by

$$
T(f)(x)=x^{2} f(x),
$$

Show that $T$ is linear.
5) (15 points) Let $P$ and $Q$ be orthogonal projections from $\mathbb{R}^{n}$ to $\mathbb{R}^{n}$. Show that if $P Q=0$, then $P+Q$ is also an orthogonal projection.

