Math 227 Exam 3 Winter 13 Solutions

1) (2 points each)
2)

a) Do it.
b) $\left[\begin{array}{cc}3^{k} & k 3^{k} \\ 3^{k+1} & (k+1) 3^{k+1}\end{array}\right]$
c) For $k=0$, we have $\left[\begin{array}{ll}1 & 0 \\ 3 & 3\end{array}\right]$, which has determinant 3 and so is invertible. Therefore $\left(x_{k}\right)$ and $\left(z_{k}\right)$ are linearly independent. Since the solution space has dimension 2, the set is a basis.
3) $\frac{800}{4049} \approx .19757$
4) a) $\lambda_{1}=2, v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right] ; \lambda_{2}=8, v_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
b) $\|A\|=8$.
c) It is it's own polar decomposition! (This happens for all positive semidefinite matrices.)
5) $\lambda=0$ is the only eigenvalue.

