Math 227 Exam 3

April 9, 2015

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Decimal approximations, accurate to four decimal places, are acceptable.

1) Given the simplified link diagram between webpages P_{1}, P_{2}, P_{3} and P_{4} described by

- P_{1} links to P_{2} and P_{4}
- P_{2} links to P_{3} and P_{1}
- P_{3} doesn't link to anything
- P_{4} links to P_{1}, P_{2}, and P_{3},
a) (4 points) Construct the link matrix A.
b) (6 points) Find the normalized matrix B.
c) (11 points) Calculate the PageRank matrix C, using $d=.85=17 / 20$.
d) (6 points) Find the associated eigenvector v with all positive entries whose 1-norm is equal to one and find the PageRank of P_{4}.

2) a) (8 points) Let

$$
C=\left[\begin{array}{ccc}
13 & -4 & 1 \\
14 & -2 & -2 \\
-12 & 6 & -4
\end{array}\right]
$$

Find all eigenvalues of C, and for each eigenvalue, find an associated eigenvector with 2 -norm equal to 3 .
b) (10 points) Let $A, B \in M_{n}(\mathbb{R})$ and suppose $A B=B A$. Show that if x is an eigenvector for A, then so is $B x$ (provided $B x \neq 0$).
3) Given the points $(-1,2),(2,-1),(5,1)$, and $(7,3)$, find the best-fit quadratic to the points by
a) (7 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (8 points) Writing the problem as a matrix equation $A x=b$,
c) (6 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (6 points) Solving the system in c) and producing the polynomial.
4) a) (8 points) Let

$$
v=\left[\begin{array}{l}
2 \\
2 \\
1 \\
2
\end{array}\right] \text { and } w=\left[\begin{array}{c}
-4 \\
3 \\
6 \\
0
\end{array}\right]
$$

Find the orthogonal projection $P \in M_{4}(\mathbb{R})$ onto the span of the vector v, then compute $P w$.
b) (10 points) Let $P \in M_{n}(\mathbb{R})$ be an orthogonal projection. Show that $\operatorname{det}(P)$ is either zero or one.

