Math 227 Exam 3

April 14, 2022

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let

$$
A=\left[\begin{array}{ll}
-4 & 2 \\
-4 & 5
\end{array}\right]
$$

a) Compute all eigenvalues of A BY HAND.
b) Check that $\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 4\end{array}\right]$ are eigenvectors corresponding to the eigenvalues you found in a) BY HAND.
2) Given the points $(3,1),(5,-2),(0,7)$ and $(6,3)$ in \mathbb{R}^{2}, find the best-fit LINE to the points by
a) Finding a system of linear equations that represents a "solution" to the problem,
b) Writing the problem as a matrix equation $A \vec{x}=\vec{b}$,
c) Finding the system $A^{t} A \vec{x}=A^{t} \vec{b}$, computing both $A^{t} A$ and $A^{t} \vec{b}$,
d) Solving the system in c) and producing the polynomial.
3) Given the simplified link diagram between webpages P_{1}, P_{2}, and P_{3} described by

- P_{1} links to P_{3}
- P_{2} doesn't link to anything
- P_{3} links to P_{2} and $P 1$,
a) Construct the link matrix A.
b) Find the normalized matrix B.
c) Calculate the PageRank matrix C, using $d=.85=17 / 20$.

3) (continued) d) What number is the matrix C guaranteed to have as an eigenvalue?
e) If an associated eigenvector v to the eigenvalue from d) is

$$
\left[\begin{array}{l}
57 \\
57 \\
74
\end{array}\right]
$$

find the PageRank of P_{1}.
4) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$,

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
2 x-y \\
y \\
x
\end{array}\right]
$$

a) Determine a matrix representation A for T.
b) Recall that $\operatorname{Ran}(T)$ is a subspace. Describe $\operatorname{Ran}(T)$ geometrically and justify your answer.
c) Recall that $\operatorname{ker}(T)$ is a subspace. Find a matrix for the orthogonal projection onto $\operatorname{ker}(T)$ and justify your answer.

