Name:

Math 227 Exam 3

April 10, 2023

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
1) Let

$$
A=\left[\begin{array}{cc}
-20 & 9 \\
54 & 25
\end{array}\right]
$$

a) Compute all eigenvalues of A BY HAND.
b) What is the one vector in \mathbb{R}^{2} that has no possibility of being an eigenvector for A ?
c) If $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is an eigenvector for A, find two other eigenvectors for A.
2) Given the points $(2,1),(6,-3),(8,0),(-1,1)$, and $(5,2)$ in \mathbb{R}^{2}, find the best-fit LINE to the points by
a) Finding a system of linear equations that represents a "solution" to the problem,
b) Writing the problem as a matrix equation $A \vec{x}=\vec{b}$,
c) Finding the system $A^{t} A \vec{x}=A^{t} \vec{b}$, computing both $A^{t} A$ and $A^{t} \vec{b}$,
d) Solving the system in c) and producing the polynomial.
3) Given the simplified link diagram between webpages P_{1}, P_{2}, P_{3} and P_{4} described by

- P_{1} links to P_{3} and P_{4}
- P_{2} links to P_{1} and P_{3}
- P_{3} doesn't link to anything
- P_{4} links to P_{1}, P_{2}, and P_{3},
a) Construct the link matrix A.
b) Find the normalized matrix B.
c) Calculate the PageRank matrix C, using $d=.85=17 / 20$.

3) (continued) d) What number is the matrix C guaranteed to have as an eigenvalue?
e) If an associated eigenvector \vec{v} to the eigenvalue from d) is
$\left[\begin{array}{l}25080 \\ 17600 \\ 35739 \\ 22020\end{array}\right]$
find the PageRank of P_{4}.
4) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$,

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
9 x-3 y+12 z \\
3 x-y+4 z \\
-12 x+4 y-16 z
\end{array}\right]
$$

a) Determine a matrix representation A for T.
b) Recall that $\operatorname{ker}(T)$ is a subspace. Find a basis for $\operatorname{ker}(T)$.
c) If you did not do so in part b), find an orthonormal basis for $\operatorname{ker}(T)$.

