Name:

Math 227 Exam 3

April 10, 2023

Directions:

- 1. WRITE YOUR NAME ON THIS TEST!
- 2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
- 3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
- 4. If you have a question, raise your hand or come up and ask me.

1) Let

$$A = \left[\begin{array}{cc} -20 & 9\\ 54 & 25 \end{array} \right].$$

a) Compute all eigenvalues of ${\cal A}$ BY HAND.

b) What is the one vector in \mathbb{R}^2 that has no possibility of being an eigenvector for A?

c) If
$$\begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
 is an eigenvector for A , find two other eigenvectors for A .

2) Given the points (2, 1), (6, -3), (8, 0), (-1, 1), and (5, 2) in \mathbb{R}^2 , find the best-fit **LINE** to the points by

a) Finding a system of linear equations that represents a "solution" to the problem,

- b) Writing the problem as a matrix equation $A\vec{x} = \vec{b}$,
- c) Finding the system $A^t A \vec{x} = A^t \vec{b}$, computing both $A^t A$ and $A^t \vec{b}$,
- d) Solving the system in c) and producing the polynomial.

3) Given the simplified link diagram between webpages P_1, P_2, P_3 and P_4 described by

- P_1 links to P_3 and P_4
- P_2 links to P_1 and P_3
- P_3 doesn't link to anything
- P_4 links to P_1 , P_2 , and P_3 ,
- a) Construct the link matrix A.
- b) Find the normalized matrix B.
- c) Calculate the PageRank matrix C, using d = .85 = 17/20.

3) (continued) d) What number is the matrix C guaranteed to have as an eigenvalue?

e) If an associated eigenvector \vec{v} to the eigenvalue from d) is

Γ	25080	
	17600	
	35739	
L	22020	

find the PageRank of P_4 .

4) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$,

$$T\left(\left[\begin{array}{c}x\\y\\z\end{array}\right]\right) = \left[\begin{array}{c}9x - 3y + 12z\\3x - y + 4z\\-12x + 4y - 16z\end{array}\right].$$

a) Determine a matrix representation A for T.

b) Recall that $\ker(T)$ is a subspace. Find a basis for $\ker(T)$.

c) If you did not do so in part b), find an orthonormal basis for ker(T).