Exam 3 Fall 23

1) a)

$$
\text { a) } \begin{aligned}
& 0=\operatorname{det}\left(A-\lambda I_{2}\right) \\
&=\operatorname{det}\left(\left[\begin{array}{cc}
-68-\lambda & 46 \\
-138 & 93-\lambda
\end{array}\right]\right) \\
&=\lambda^{2}-25 \lambda+634 \gamma-6324 \\
&=\lambda^{2}-25 \lambda+24 \\
&=(\lambda-24)(\lambda-1) \\
& \text { b) }\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& \text { c) }\left[\begin{array}{l}
2 \\
3
\end{array}\right] \text { since }\left[\begin{array}{l}
2 \\
3
\end{array}\right] \cdot[3-24]=0
\end{aligned}
$$

2) a)

$$
\begin{aligned}
& y=m x+6 \\
& 4=2 m+b \\
& 3=-3 m+6 \\
& 0=4 m+6 \\
& 2=m+6
\end{aligned}
$$

b) $\left[\begin{array}{cc}1 & 2 \\ 1 & -3 \\ 1 & 4 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}b \\ m\end{array}\right]=\left[\begin{array}{l}4 \\ 3 \\ 0 \\ z\end{array}\right]$
c)

$$
\begin{aligned}
& A^{t}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & -3 & 4 & 1
\end{array}\right] \\
& A^{t} \cdot \vec{b}=\left[\begin{array}{l}
a \\
1
\end{array}\right] \\
& A^{t} \cdot A=\left[\begin{array}{ll}
4 & 4 \\
4 & 30
\end{array}\right]
\end{aligned}
$$

$$
\left[\begin{array}{ll}
4 & 4 \\
4 & 30
\end{array}\right]\left[\begin{array}{l}
b \\
m
\end{array}\right]=\left[\begin{array}{l}
a \\
1
\end{array}\right]
$$

d)

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cc}
4 & 4 \\
4 & 30
\end{array}\right]\right)=120-16=104 \pm 0 \\
& {\left[\begin{array}{l}
b \\
m
\end{array}\right] }=\frac{1}{104}\left[\begin{array}{cc}
30 & -4 \\
-4 & 4
\end{array}\right]\left[\begin{array}{l}
9 \\
1
\end{array}\right] \\
&=\frac{1}{104}\left[\begin{array}{c}
266 \\
-32
\end{array}\right] \\
& y=-\frac{32}{104} x+\frac{266}{104}
\end{aligned}
$$

31

$$
\begin{gathered}
p_{1} \\
p_{2} \Leftarrow l_{3}
\end{gathered}
$$

a)

$$
\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

b)

$$
\begin{aligned}
& A H\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 &
\end{array}\right] \\
& B=\left[\begin{array}{lll}
0 & 1 / 3 & 1 / 2 \\
0 & 1 / 3 & 1 / 2 \\
1 & 1 / 3 & 0
\end{array}\right]
\end{aligned}
$$

()

$$
\begin{aligned}
C & =\frac{17}{20} B+\frac{1-\frac{17}{20}}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{1}{20} & 1 / 3 & 14 / 40 \\
\frac{1}{20} & 1 / 3 & 19 / 40 \\
\frac{9}{10} & 1 / 3 & 1 / 20
\end{array}\right]
\end{aligned}
$$

d) $\lambda=1$
e) $\left[\begin{array}{l}57 \\ 57 \\ 74\end{array}\right]$
4)
a) $T\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{c}1 \\ -7\end{array}\right]$

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
6 \\
-42
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
-3 \\
21
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
1 & 6 & -3 \\
-7 & -42 & 21
\end{array}\right]
\end{aligned}
$$

b) $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}3 \\ 0 \\ 1\end{array}\right]$
C) Since T is not te zero function ind her (T) has two nomporalicl vectors in it, $\operatorname{ner}(\tau)$ is a plane

$$
\text { d) } \operatorname{Ran}(T)=\operatorname{col}(A)=\text { multipes of }\left[\begin{array}{c}
1 \\
-7
\end{array}\right]
$$

Nornalite: $\vec{u}=\frac{1}{\sqrt{50}}\left[\begin{array}{c}1 \\ -7\end{array}\right]$
Closest vector to $\left[\begin{array}{l}7 \\ 2\end{array}\right]$ is

$$
\begin{aligned}
& \vec{u} \cdot \vec{u}^{t} \cdot\left[\begin{array}{l}
7 \\
z
\end{array}\right] \\
& =\frac{1}{50}\left[\begin{array}{c}
1 \\
-7
\end{array}\right]\left[\begin{array}{ll}
1 & -7
\end{array}\right]\left[\begin{array}{l}
7 \\
2
\end{array}\right] \\
& =\frac{-7}{50}\left[\begin{array}{c}
1 \\
-7
\end{array}\right]
\end{aligned}
$$

