Fall 23 final

1) a) No, only one, zero, or infinitely many solutions.
b) vector addition and scalar multiplication
C) point, line, plane $\left(\mathbb{R}^{2}\right)$
d) point, line, plane, 3-D space (UR $R^{\text {s) }}$
e) matrix
2) a) yes, $2 x($
b) No
c) No
d) No
e) N_{0}
3) $\quad y=a x^{3}+b x^{2}+c x+d$
a) $\quad 4=a+b+c+d$

$$
\begin{aligned}
& 8=-a+b-c+d(2) \\
& 7=-8 a+4 b-2 c+d(3) \\
& 5=d
\end{aligned}
$$

b) Add (1) ad (2)

$$
\begin{aligned}
& 12=2 b+2 a=2 b+10 \\
& 2 b=2, b=1
\end{aligned}
$$

Subtect (2) from (1)

$$
\begin{gathered}
-4=2 a+2 c \\
a+c=-2
\end{gathered}
$$

$$
c=-2-a
$$

Plug into $3^{\text {rd }}$ equation

$$
\begin{aligned}
& 7=-8 a+4-2(-2-a)+5 \\
& 7=-6 a+13 \\
& -6 a=-6 \\
& a=1 \\
& c=-2-a=-3
\end{aligned}
$$

c) $y=x^{3}+x^{2}-3 x+5$
4)
a) $\left[\begin{array}{lll}11 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 1\end{array}\right]$
b) $\left[\begin{array}{lll}1 & 0 & 16 \\ 0 & 1 & 9 \\ 0 & 0 & 1\end{array}\right]$
c)

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\cos (\pi / 6) & -\sin (\pi / 6) & 0 \\
\sin (\pi / 6) & \cos (\pi / 6) & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

d) $A \cdot B \cdot G$
5) $y=m x+b$
a)

$$
\begin{aligned}
& 4=n+b \\
& 8=-m+b \\
& 7=-2 m+6 \\
& 5=b
\end{aligned}
$$

b) $\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & -2 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}b \\ m\end{array}\right]=\left[\begin{array}{l}4 \\ 8 \\ 7 \\ 5\end{array}\right]$
c) $\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 1 & -1 & -2 & 0\end{array}\right]\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 1 & -2 \\ 1 & 0\end{array}\right]$

$$
\begin{aligned}
&=\left[\begin{array}{cc}
4 & -2 \\
-2 & 6
\end{array}\right]=A^{6} A \\
& A^{t} \cdot b=\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & -2 & -2 & 0
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
7 \\
5
\end{array}\right] \\
&=\left[\begin{array}{c}
24 \\
-26
\end{array}\right] \\
& {\left[\begin{array}{l}
4 \\
-2 \\
-2
\end{array}\right]\left[\begin{array}{l}
b \\
m
\end{array}\right]=\left[\begin{array}{c}
24 \\
-26
\end{array}\right] }
\end{aligned}
$$

d)

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{cc}
4 & -2 \\
-2 & 6
\end{array}\right]\right)=24-4-20 \pm 0 \\
& \text { so }\left[\begin{array}{l}
b \\
m
\end{array}\right]=\frac{1}{20}\left[\begin{array}{cc}
6 & 2 \\
2 & 4
\end{array}\right]\left[\begin{array}{c}
24 \\
-26
\end{array}\right] \\
& {\left[\begin{array}{l}
b \\
m
\end{array}\right]=\frac{1}{20}\left[\begin{array}{c}
492 \\
-56
\end{array}\right]} \\
& y=\frac{-56}{20} x+\frac{92}{20} \\
& y=\frac{-12}{5} x+\frac{23}{5} \\
& \approx
\end{aligned}
$$

6) al $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
b) $\operatorname{det}\left[\begin{array}{ccc}8-\lambda & 1 & -4 \\ 0 & -2-\lambda & 0 \\ 5 & 0 & -1-\lambda\end{array}\right]$

$$
=(8-\lambda)(-2-\lambda)(-1-\lambda)+20(-2-\lambda)
$$

$$
=(-2-\lambda)\left(\lambda^{2}-7 \lambda-8+20\right)
$$

$$
=(-2-\lambda)\left(\lambda^{2}-7 \lambda+12\right)
$$

$$
\begin{array}{r}
=(-2-\lambda)(\lambda-4)(\lambda+3) \\
\lambda=4,-3,-2
\end{array}
$$

7) a) $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0\end{array}\right]=A$
b)

$$
\begin{aligned}
& A^{\prime}=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{array}\right] \\
& B=\left[\begin{array}{cccc}
0 & 1 / 4 & 1 / 3 & 0 \\
1 / 2 & 1 / 4 & 1 / 3 & 1 \\
0 & 1 / 4 & 0 & 0 \\
1 / 2 & 1 / 4 & 1 / 3 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { c) } C=\frac{17}{20} B+\frac{3 / 20}{u}[- \\
& C=\left[\begin{array}{llll}
3 / 80 & 1 / 4 & 77 / 240 & 3 / 80 \\
37 / 80 & 1 / 4 & 77 / 240 & 7 / 80 \\
3 / 80 & 1 / 4 & 3 / 80 & 3 / 80 \\
37 / 80 & 1 / 4 & 77 / 240 & 3 / 80
\end{array}\right] \\
& \text { d) } 61600+162393+48000+87780
\end{aligned}
$$

8) a)

$$
\begin{aligned}
A=\left[\begin{array}{cc}
6 & -2 \\
1 & 4
\end{array}\right] & \\
\text { Aren }=\left|\operatorname{det}\left[\begin{array}{cc}
6 & -2 \\
1 & 4
\end{array}\right]\right| & =|24+2| \\
& =26
\end{aligned}
$$

b)

$$
\left.\begin{array}{l}
\text { vector }=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
{\left[\begin{array}{lll}
1 & 4 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0} \\
x+4 y=0 \\
x=-4 y \\
{\left[\begin{array}{lll}
0 & 12 & -6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=0} \\
12 y-6 z=0 \\
z=2 y
\end{array}\right]\left[\begin{array}{c}
-4 \\
1 \\
2
\end{array}\right] .
$$

$$
\begin{aligned}
\left\|\left[\begin{array}{c}
-4 \\
1 \\
2
\end{array}\right]\right\|_{2} & =\sqrt{16+4+1} \\
& =\sqrt{21} \\
\frac{7}{2} & {\left[\begin{array}{c}
-4 \\
1 \\
2
\end{array}\right] \quad \text { or its } }
\end{aligned}
$$

9) a)

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right] \\
& T\left(\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-2
\end{array}\right]\right. \\
& A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & -1 \\
1 & -1 & 0 \\
1 & 1 & -2
\end{array}\right]
\end{aligned}
$$

b)

$$
\begin{aligned}
\operatorname{Ran}(T) & =\operatorname{col}(A) \\
& =\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-2
\end{array}\right]\right)
\end{aligned}
$$

The first 2 vectors aren't multiples.
Then if se sole

$$
x\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right]+y\left[\begin{array}{r}
0 \\
1 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-1 \\
0 \\
-2
\end{array}\right]
$$

So

$$
\begin{aligned}
& x=-1 \\
& y=-1 \\
& x-y=0 \\
& x+y=-2
\end{aligned}
$$

with $x=-1=y$, all equations are satisfied

So

$$
\begin{aligned}
& \operatorname{Ram}(T)=\operatorname{span}\left(\left\{\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
-1 \\
1
\end{array}\right]\right)\right. \\
& =\text { a plane }
\end{aligned}
$$

c)

$$
\begin{gathered}
\tau\left(\left[\begin{array}{l}
\hat{y} \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
x-z=0 \quad \rightarrow x=z \\
y-z=0 \\
x-y=0 \quad \rightarrow x=y \\
x+y-\alpha z=0 \rightarrow x+y=\partial z \\
x=y=z \\
\operatorname{uer}(T)=\text { multiples of }\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

d)

$$
\begin{aligned}
& \left\|\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\|_{2}=\sqrt{3} \\
& v_{u}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& p=\vec{v}_{0}^{t}=\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
(0) \quad a)\left[\begin{array}{l}
0 \\
1 \\
7
\end{array}\right]=x\left[\begin{array}{c}
-1 \\
2 \\
8
\end{array}\right]+y\left[\begin{array}{c}
-3 \\
8 \\
48
\end{array}\right] \\
-3 y-x=0 \rightarrow x=-3 y \\
2 x+8 y=1 \\
8 x+48 y=7
\end{gathered}
$$

Plussins in 1

$$
\left.\begin{array}{rl}
2(-3 y)+8 y & =1 \\
2 y & =1 \\
7 & =1 / 1 \quad x=-3 / 2 \\
-3 / 28 & +\frac{1}{2} \cdot 48
\end{array}\right)=\left\{\begin{array}{l}
24-12=12 \neq 7
\end{array}\right.
$$

So $V_{V_{1}}$ is not in the span of \vec{v}_{2} and \vec{v}_{3}.
b) \vec{v}_{2} and \vec{v}_{3} rent multiples, so spar $\left(\vec{v}_{2}, \vec{v}_{3}, \vec{v}_{1}\right)$ is et least a plane. But \vec{v}_{1} isis in the span of \vec{v}_{2} and \vec{v}_{3} by a),

So $\operatorname{span}\left(\vec{v}_{2}, \vec{v}_{3}, \vec{v}_{1}\right)$ is'st a plane. Therefore, the span must be $1 R^{3}$.

Orthonorad basis for ω :

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$\| \begin{array}{ll}(1)\end{array}\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
b) S-ppose A is not ivvertible.

Then there is a nontero $\vec{v} \in \mathbb{R}^{n}$ with

$$
A \vec{v}=\overrightarrow{0} \text {. }
$$

mult)piains by A^{t},

$$
A^{t} \cdot A \vec{v}=A^{t} \cdot \overrightarrow{0}=\overrightarrow{0}
$$

multiplyins by $\left(A^{t} A\right)^{-1}$,

$$
\begin{aligned}
\vec{O}=\left(A^{t} A\right)^{-1} \cdot \vec{O} & =\left(A^{t} \cdot A\right)^{-1} \cdot\left(A^{t} \cdot A\right)^{-} \vec{r} \\
& =\vec{r}
\end{aligned}
$$

But \vec{v} was nonzero, so this cant happen.
(2)
a)

$$
\begin{aligned}
& f(x)=01 \\
& f(x)=1 \\
& f(x)=2
\end{aligned}
$$

$$
\text { b) } f(x)=x
$$

C) ω is nonempty by a).

Now let $f_{1} j \in W_{,} \quad k \in \mathbb{R}$.
Then $f(x)=f(-x)$
and $g(x)=g(-x)$ for all $x \in \|)$.

So

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
& =f(-x)+g(-x) \\
& =(f+y)(-x)
\end{aligned}
$$

Also, $(k \cdot f)(x)=k \cdot f(x)$

$$
\begin{aligned}
& =k \cdot f(-x) \\
& =(k \cdot f)(-x)
\end{aligned}
$$

Therefore, ω is a subspace of $f(2)$.

