Math 227 Final

December 17, 2019

Directions:

1. WRITE YOUR NAME ON THIS TEST!
2. Only calculators are allowed; NO laptops, tablets, or phones.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. If you have a question, raise your hand or come up and ask me.
5. If you had a choice on whether to take this exam, please indicate your understanding of the potential consequences by signing the statement(s) below:

I understand that by taking this exam, I may lower my grade from what it was before the final.

Signed:

\qquad

I had a choice on whether to take this exam, and now that I've seen it, I want to keep my pre-final grade!

Signed:

\qquad

1. Short Answer. Use the following:

$$
A=\left[\begin{array}{ccccc}
1 & 5 & 0 & 8 & 6 \\
2 & 10 & -1 & 14 & 12 \\
3 & 15 & -1 & 22 & 18
\end{array}\right] \text { row reduces to } B=\left[\begin{array}{lllll}
1 & 5 & 0 & 8 & 6 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(a) (2 points) The homogeneous system $A x=\overrightarrow{0}$ for $\overrightarrow{0} \in \mathbb{R}^{3}$ has
A. No solution
B. Infinitely many solutions
C. Exactly one solution
D. Either A. or B.
E. Either A. or C.
(b) (2 points) For any vector b in \mathbb{R}^{3}, the system $A x=b$ has
A. No solution
B. Infinitely many solutions
C. Exactly one solution
D. Either A. or B.
E. Either A. or C.
(c) (4 points) Is the matrix B in reduced row echelon form? Briefly explain why or why not.

Recall:

$$
A=\left[\begin{array}{ccccc}
1 & 5 & 0 & 8 & 6 \\
2 & 10 & -1 & 14 & 12 \\
3 & 15 & -1 & 22 & 18
\end{array}\right] \text { row reduces to } B=\left[\begin{array}{lllll}
1 & 5 & 0 & 8 & 6 \\
0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(d) (2 points) For matrix A, the column space, $\operatorname{Col}(A)$, is a subspace of \mathbb{R}^{m} where $m=$ \qquad —.
(e) (2 points) For matrix A, the row space, $\operatorname{Row}(A)$, is a subspace of \mathbb{R}^{m} where $m=$ \qquad _.
(f) (2 points) For matrix A, the null space, $\operatorname{ker}(A)$, is a subspace of \mathbb{R}^{m} where $m=$ \qquad .
(g) (6 points) Referring to A as above, for each of the spaces $\operatorname{Col}(A)$, $\operatorname{Row}(A)$, and $\operatorname{ker}(A)$, write down a nonzero vector in the space.
2. Mark each item as True or False. No justification is necessary.
(a) (2 points) True or False: For every matrix A, the homogeneous system $A \vec{x}=\overrightarrow{0}$ has at least one solution.
(b) (2 points) True or False: If A is a 5×11 matrix, then the system $A \vec{x}=\vec{b}$ has at least one solution for all $\vec{b} \in \mathbb{R}^{5}$.
(c) (2 points) True or False: If A is an invertible $n \times n$ matrix, then the system $A \vec{x}=\vec{b}$ has at least one solution for all $\vec{b} \in \mathbb{R}^{n}$.
(d) (2 points) True or False: If A is an $n \times n$ matrix with $\operatorname{det}(A)=0$, then A^{-1} exists.
(e) (2 points) True or False: If A is an $n \times n$ diagonal matrix, then A^{-1} exists.
3. Determine whether the following computations can be done. If the computation cannot be done, briefly explain why. If the computation can be done, give the dimensions of the resulting output.

$$
A=\left[\begin{array}{ccc}
0 & 1 & 3 \\
-1 & 2 & 1 \\
0 & 3 & 1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
1 & 4 & -2 \\
2 & 0 & 1
\end{array}\right], \quad C=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
0 & 2
\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] .
$$

(a) (2 points) $A \vec{v}$
(b) (2 points) $\vec{v} A$
(c) (2 points) $A B$
(d) (2 points) $A C$
(e) (2 points) $C^{T}+B$
4. (12 points) Solve the following system of equations BY HAND, using any manner at your disposal, or show there is no solution. SHOW YOUR WORK.

$$
\begin{array}{r}
x-2 y+3 z=1 \\
x-y+3 z=2 \\
2 x-3 y+7 z=2
\end{array}
$$

5. Let

$$
A=\left[\begin{array}{lll}
2 & 0 & 3 \\
0 & 1 & 0 \\
3 & 0 & 2
\end{array}\right]
$$

a) (10 points) Compute all eigenvalues of A BY HAND.
b) (10 points) Show that $\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are eigenvectors of A.
6. Find the matrix of the linear transformations on \mathbb{R}^{3} that, in homogeneous coordinates,
a) (3 points) scales a 2 -vector down by a factor of 6 .
b) (4 points) shifts a 2 -vector up 5 units and left 14 units
c) (5 points) rotates a 2 -vector by $\pi / 6$ radians counterclockwise.
d) (2 points) If A, B, and C are the matrices from parts a), b), and c), respectively, in what order do you write the product of A, B, and C if you first scale, then shift, then rotate?
7. Given the points $(0,2),(-3,4),(5,8)$ and $(9,-16)$ in \mathbb{R}^{2}, find the best-fit line to the points by
a) (6 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (3 points) Writing the problem as a matrix equation $A x=b$,
c) (8 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (7 points) Solving the system in c) and producing the polynomial.
8. Given the simplified link diagram between webpages P_{1}, P_{2} and P_{3} described by

- P_{1} links to P_{3} and P_{2}
- P_{2} links to P_{1} and P_{3}
- P_{3} links to P_{2}
a) (5 points) Construct the link matrix A.
b) (3 points) Find the normalized matrix B.
c) (5 points) Write down a formula for the PageRank matrix C, using $d=.85=17 / 20$, but DO NOT COMPUTE C.
d) (4 points) If an associated eigenvector v to the eigenvalue $\lambda=1$ is

$$
\left[\begin{array}{c}
40 / 57 \\
74 / 57 \\
1
\end{array}\right]
$$

find the PageRank of P_{1}.
9. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$,

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
5 x-7 y \\
-13 x+42 y \\
101 x+8 y
\end{array}\right]
$$

a) (9 points) Find a matrix representation A for T.
b) (4 points) Write down a formula for the orthogonal projection onto $\operatorname{Ran}(T)$.
10. Let

$$
v_{1}=\left[\begin{array}{l}
1 \\
1 \\
3
\end{array}\right], v_{2}=\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right], v_{3}=\left[\begin{array}{c}
-1 \\
3 \\
5
\end{array}\right] .
$$

Denote by W the subspace of \mathbb{R}^{3} consisting of all linear combinations of v_{1}, v_{2}, and v_{3}.
(a) (7 points) Determine whether v_{3} is a linear combination of v_{1} and v_{2}.
(b) (7 points) Find a nonzero vector orthogonal to every vector in W.
(c) (7 points) Determine the orthogonal projection onto W^{\perp}.
11. (13 points) Let

$$
W=\left\{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]: x+y+2 z=0\right\}
$$

Show that W is a subspace of \mathbb{R}^{3}.

Page 13
12. (10 points) Let

$$
S=\left\{\left[\begin{array}{l}
x \\
y
\end{array}\right]: x+y \geq 0\right\}
$$

Show that S is not a subspace of \mathbb{R}^{2}.

Page 14
13. (15 points) Define $T: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$,

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Show that ± 1 are the only eigenvalues of T.

