Math 227 Final Winter 13 Solutions

1) (2 points each)

2)

3)

a)
$$x_1 \begin{bmatrix} 3 \\ 8 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ -2 \\ -1 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

b) $x_1 = 1, x_2 = 5, x_3 = 4, x_4 = 3$ is one possible solution.

4) a)
$$||v||_2 = 10$$
, $||w||_2 = 10\sqrt{2}$, $v \cdot w = 100$.

b)
$$\cos(\theta) = \frac{v \cdot w}{\|v\|_2 \cdot \|w\|_2}, \ \theta = 45^{\circ}$$

6) a) Do it.

b)
$$Nul(T) = \{(0,0)\}$$

c)
$$Rank(T) = 2$$

7)
$$4389/17165 \approx .25569$$
.

8) a)
$$||A|| = 5$$

b)
$$|A| = \begin{bmatrix} 247/50 & 21/50 \\ 21/50 & 103/50 \end{bmatrix}$$
, $w = \frac{1}{5} \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}$

9) a) Do it.

b)
$$\begin{bmatrix} k & 2^k \\ k+1 & 2^{k+1} \end{bmatrix}$$

c) No- the solution space has dimension 3.

10)
$$y = 31/14x + 12/7$$
.

11) a)
$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

- c) $I_1 = -14/9$, $I_2 = I_3 = 14/9$, $v_1 v_2 = 4/3$, $v_2 v_3 = -16/9$, $v_1 v_3 = -4/9$
- **12)** a) v = (0, 2, 0) is in W, but $\sqrt{2}v$ is not.
- b) We have $(x,2,z) \in W$ for all $x,z \in \mathbb{R}$ and $(x,0,z) \in W$ implies $v \cdot (x,0,z) = 0$. Then if $y \neq 0$, $(2x/y,2,2z/y) \in W$, and so $v \cdot (2x/y,2,2z/y) = 0$. By factoring out 2/y, we get that $v \cdot (x,y,z) = 0$ for all $x,y \in \mathbb{R}$ and for all $y \neq 0$. This then implies that v = 0.