Math 227 Final

April 20, 2015

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Decimal approximations, accurate to four decimal places, are acceptable.

1) Let $v=\langle 2,10 \sqrt{2}, 2\rangle$ and $w=\langle 0, \sqrt{6}, 3\rangle$. Note that v and w are linearly independent.
a) (3 points) Calculate $\|v\|_{\infty}$ and $\|v\|_{2}$.
b) (3 points) Calculate $\|w\|_{0}$ and $\|w\|_{1}$.
c) (5 points) Calculate $\langle v, w\rangle=v \cdot w$ and use this to orthogonalize v and w via Gram-Schmidt.
2) Potassium Arsenate $\left(\mathrm{K}_{3} \mathrm{AsO}_{4}\right)$ combines with Hydrogen Disulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ to produce arsenic pentasulfide $\left(A s_{2} S_{5}\right)$, potassium hydroxide $(K O H)$, and water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ via the equation

$$
K_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{As}_{2} \mathrm{~S}_{5}+\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}
$$

a) (8 points) Determine a system of linear equations (or a matrix) that balances the equation.
b) (8 points) Balance the equation. Note: If you can do this without using part a), you will get full credit for the entire problem.
3) Find the matrix of the linear transformations on \mathbb{R}^{3} that, in homogeneous coordinates,
a) (3 points) scales the x-coordinate of a 2 -vector down by 3 and the y-coordinate up by 7 .
b) (4 points) shifts a 2 -vector up 13 units and left 8 units
c) (5 points) rotates a 2 -vector by $2 \pi / 3$ radians counterclockwise
d) (6 points) scales the x-coordinate of a 2 -vector down by 3 and the y coordinate up by 7 , then rotates the vector by $2 \pi / 3$ radians counterclockwise, and finally shifts the vector up 13 units and left 8 units.
4) Find the interpolating cubic through the points $(0,6),(-1,2),(-5,7)$ and $(3,4)$ in \mathbb{R}^{2} by,
a) (6 points) writing down a system of linear equations that determines the coefficients of the polynomial, then
b) (4 points) finding the solution to the equation and writing down the polynomial.
5) Given the points $(0,6),(-1,2),(-5,7)$ and $(3,4)$ in \mathbb{R}^{2}, find the best-fit quadratic to the points by
a) (6 points) Finding a system of linear equations that represents a "solution" to the problem,
b) (5 points) Writing the problem as a matrix equation $A x=b$,
c) (5 points) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) (6 points) Solving the system in c) and producing the polynomial.
6) Given the simplified link diagram between webpages $P_{1}, P_{2}, P_{3}, P_{4}$ and P_{5} described by

- P_{1} links to P_{2} and P_{5}
- P_{2} links to P_{1}
- P_{3} links to P_{1}, P_{2}, P_{4} and P_{5}
- P_{4} doesn't link to anything
- P_{5} links to P_{2}, P_{3}, and P_{4}
a) (5 points) Construct the link matrix A.
b) (5 points) Find the normalized matrix B.
c) (8 points) Calculate the PageRank matrix C, using $d=.85=17 / 20$.
d) (6 points) Find the associated eigenvector v with all positive entries whose 1-norm is equal to one and find the PageRank of P_{2}.

7) Given the signals $x_{k}=1, w_{k}=(-1 / 2)^{k}$, and $z_{k}=k$ and the homogeneous linear difference equation

$$
\begin{equation*}
2 y_{k+3}-3 y_{k+2}+y_{k}=0 \tag{1}
\end{equation*}
$$

a) (9 points) check that $\left(x_{k}\right)_{k \in \mathbb{Z}},\left(w_{k}\right)_{k \in \mathbb{Z}}$, and $\left(z_{k}\right)_{k \in \mathbb{Z}}$ all satisfy equation (1);
b) (5 points) determine the Casorati matrix associated to the signals $\left(x_{k}\right)_{k \in \mathbb{Z}},\left(w_{k}\right)_{k \in \mathbb{Z}}$, and $\left(z_{k}\right)_{k \in \mathbb{Z}}$.
c) (6 points) Is $\left\{\left(x_{k}\right)_{k \in \mathbb{Z}},\left(w_{k}\right)_{k \in \mathbb{Z}},\left(z_{k}\right)_{k \in \mathbb{Z}}\right\}$ a basis for the subspace of all signals satisfying equation (1)? Justify your assertion.
8) Consider the following electrical circuit:

v3
a) (5 points) Find the edge-node incidence matrix A.
b) (3 points) Determine the resistance matrix R.
c) (6 points) Set up a matrix equation for finding the currents I_{1}, I_{2}, and I_{3} and the potential differences between v_{1}, v_{2}, and v_{3}.
d) (6 points) Find the currents I_{1}, I_{2} and I_{3} and potential differences between v_{1}, v_{2} and v_{3}.
9) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$,

$$
T(x, y, z)=(3 x-y+z, 10 x+4 y-8 z, 2 y-9 z)
$$

a) (8 points) Show that T is linear.
b) (5 points) Find the standard matrix of T and compute all eigenvalues of T. Is T invertible?
c) (10 points) Let $W=\left\{S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \mid S T=0\right\}$. Show that W is a subspace of $M_{3}(\mathbb{R})$.
10) a) (6 points) Let

$$
v_{1}=\left[\begin{array}{c}
7 \\
-3 \\
11 \\
42
\end{array}\right], v_{2}=\left[\begin{array}{c}
12 \\
9 \\
-1 \\
-15
\end{array}\right]
$$

Find two different vectors v and w in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$ that are neither a scalar multiple of v_{1} nor a scalar multiple of v_{2}. Then find a vector u that is NOT in $\operatorname{span}\left\{v_{1}, v_{2}\right\}$. For the last part, be sure to show that your answer is correct.
b) (10 points) If $A \in M_{n}(\mathbb{R})$ is invertible and $B \in M_{n}(\mathbb{R})$ is not invertible, show that $A B$ is not invertible.

