Name:

Math 227 Final

April 20, 2015

Directions: WRITE YOUR NAME ON THIS TEST! Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer. Decimal approximations, accurate to four decimal places, are acceptable.

- 1) Let $v = \langle 2, 10\sqrt{2}, 2 \rangle$ and $w = \langle 0, \sqrt{6}, 3 \rangle$. Note that v and w are linearly independent.
 - a) (3 points) Calculate $||v||_{\infty}$ and $||v||_{2}$.
 - b) (3 points) Calculate $||w||_0$ and $||w||_1$.
- c) (5 points) Calculate $\langle v,w\rangle=v\cdot w$ and use this to orthogonalize v and w via Gram-Schmidt.

2) Potassium Arsenate (K_3AsO_4) combines with Hydrogen Disulfide (H_2S) to produce arsenic pentasulfide (As_2S_5) , potassium hydroxide (KOH), and water (H_2O) via the equation

$$K_3AsO_4 + H_2S \rightarrow As_2S_5 + KOH + H_2O$$

- a) (8 points) Determine a system of linear equations (or a matrix) that balances the equation.
- b) (8 points) Balance the equation. *Note:* If you can do this without using part a), you will get full credit for the entire problem.

- 3) Find the matrix of the linear transformations on \mathbb{R}^3 that, in homogeneous coordinates,
- a) (3 points) scales the x-coordinate of a 2-vector down by 3 and the y-coordinate up by 7.
 - b) (4 points) shifts a 2-vector up 13 units and left 8 units
 - c) (5 points) rotates a 2-vector by $2\pi/3$ radians counterclockwise
- d) (6 points) scales the x-coordinate of a 2-vector down by 3 and the y-coordinate up by 7, then rotates the vector by $2\pi/3$ radians counterclockwise, and finally shifts the vector up 13 units and left 8 units.

- **4)** Find the interpolating cubic through the points (0,6), (-1,2), (-5,7) and (3,4) in \mathbb{R}^2 by,
- a) (6 points) writing down a system of linear equations that determines the coefficients of the polynomial, then
- b) (4 points) finding the solution to the equation and writing down the polynomial.

- **5)** Given the points (0,6), (-1,2), (-5,7) and (3,4) in \mathbb{R}^2 , find the best-fit quadratic to the points by
- a) (6 points) Finding a system of linear equations that represents a "solution" to the problem,
 - b) (5 points) Writing the problem as a matrix equation Ax = b,
- c) (5 points) Finding the system $A^tAx = A^tb$, computing both A^tA and A^tb ,
 - d) (6 points) Solving the system in c) and producing the polynomial.

- **6)** Given the simplified link diagram between webpages P_1 , P_2 , P_3 , P_4 and P_5 described by
 - P_1 links to P_2 and P_5
 - P_2 links to P_1
 - P_3 links to P_1 , P_2 , P_4 and P_5
 - \bullet P_4 doesn't link to anything
 - P_5 links to P_2 , P_3 , and P_4
- a) (5 points) Construct the link matrix A.
- b) (5 points) Find the normalized matrix B.
- c) (8 points) Calculate the PageRank matrix C, using d=.85=17/20.
- d) (6 points) Find the associated eigenvector v with all positive entries whose 1-norm is equal to one and find the PageRank of P_2 .

7) Given the signals $x_k = 1$, $w_k = (-1/2)^k$, and $z_k = k$ and the homogeneous linear difference equation

$$2y_{k+3} - 3y_{k+2} + y_k = 0, (1)$$

- a) (9 points) check that $(x_k)_{k\in\mathbb{Z}}$, $(w_k)_{k\in\mathbb{Z}}$, and $(z_k)_{k\in\mathbb{Z}}$ all satisfy equation (1);
- b) (5 points) determine the Casorati matrix associated to the signals $(x_k)_{k\in\mathbb{Z}}$, $(w_k)_{k\in\mathbb{Z}}$, and $(z_k)_{k\in\mathbb{Z}}$.
- c) (6 points) Is $\{(x_k)_{k\in\mathbb{Z}}, (w_k)_{k\in\mathbb{Z}}, (z_k)_{k\in\mathbb{Z}}\}$ a basis for the subspace of all signals satisfying equation (1)? Justify your assertion.

8) Consider the following electrical circuit:

- a) (5 points) Find the edge-node incidence matrix A.
- b) (3 points) Determine the resistance matrix R.
- c) (6 points) Set up a matrix equation for finding the currents I_1 , I_2 , and I_3 and the potential differences between v_1 , v_2 , and v_3 .
- d) (6 points) Find the currents I_1 , I_2 and I_3 and potential differences between v_1 , v_2 and v_3 .

9) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$,

$$T(x, y, z) = (3x - y + z, 10x + 4y - 8z, 2y - 9z).$$

- a) (8 points) Show that T is linear.
- b) (5 points) Find the standard matrix of T and compute all eigenvalues of T. Is T invertible?
- c) (10 points) Let $W = \{S : \mathbb{R}^3 \to \mathbb{R}^3 \mid ST = 0\}$. Show that W is a subspace of $M_3(\mathbb{R})$.

10) a) (6 points) Let

$$v_1 = \begin{bmatrix} 7 \\ -3 \\ 11 \\ 42 \end{bmatrix}, \ v_2 = \begin{bmatrix} 12 \\ 9 \\ -1 \\ -15 \end{bmatrix}$$

Find two different vectors v and w in $span\{v_1, v_2\}$ that are neither a scalar multiple of v_1 nor a scalar multiple of v_2 . Then find a vector u that is NOT in $span\{v_1, v_2\}$. For the last part, be sure to show that your answer is correct.

b) (10 points) If $A \in M_n(\mathbb{R})$ is invertible and $B \in M_n(\mathbb{R})$ is not invertible, show that AB is not invertible.