Name:

Math 227 Final

Winter 2020 Corona Virus Edition

Directions:

- 1. You may use your notes, textbook, and a calculator for this exam, but NO OTHER RESOURCES; if I can determine you're cheating on this exam, you'll get a zero.
- 2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
- 3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
- 4. Once you submit this exam through Canvas, it will factor into your grade in the manner described in the syllabus. NO TAKE-BACKS. Please indicate your understanding of the potential consequences of taking this exam by signing the statement below:

I understand that by taking this exam, I may lower my grade from what it was before the final.

Signed: _____

1) Given the simplified link diagram between webpages P_1 , P_2 , and P_3 described by

- P_1 links to P_3
- P_2 links to P_1 and P_3
- P_3 doesn't link to anything,
- a) Construct the link matrix A.
- b) Find the normalized matrix B.
- c) Calculate the PageRank matrix C, using d = .85 = 17/20.
- d) Find all eigenvalues of C BY HAND (recall that $\lambda = 1$ should always be an eigenvalue).

e) If
$$v = \begin{bmatrix} 20/37 \\ 800/2109 \\ 1 \end{bmatrix}$$
 is an eigenvector for $\lambda = 1$, find the PageRank of P_2 .

2) Given the points (-1, 2), (0, 8), and (3, -1) in \mathbb{R}^2 , find the best-fit line to the points by

a) Finding a system of linear equations that represents a "solution" to the problem,

- b) Writing the problem as a matrix equation Ax = b,
- c) Finding the system $A^tAx = A^tb$, computing both A^tA and A^tb ,
- d) Solving the system in c) BY HAND and producing the polynomial.

3) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}y-x\\y\\3x+y\end{bmatrix}.$$

a) Determine a matrix representation A for T.

b) Find a basis for the column space of A, with justification as to why your answer is a basis.

c) Find an orthonormal basis for the column space of A (an answer for this will count as an answer for a)), showing all work used to constuct this basis.

4) Let \mathcal{S} denote the vector space of all sequences of real numbers. Let W be the subset of \mathcal{S} consisting of all convergent sequences. Show that W is a subspace of \mathcal{S} .

5) We know from work in class that the kernel of a linear transformation is a subspace. For ALL subspaces W of \mathbb{R}^n , show that there is a linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ with ker(T) = W. *Hint:* orthogonal projections.

6) Let $N \in M_n(\mathbb{R})$ be a nilpotent matrix. The *nilpotency index* of N is the smallest whole number k with $N^k = 0$ (since N is nilpotent, we know such a k exists). Do your best to show that for ALL values of n and ALL nilpotent matrices $N \in M_n(\mathbb{R})$, the nilpotency index of N can never be greater than n.