Math 227 Final

Winter 2020 Corona Virus Edition

Directions:

1. You may use your notes, textbook, and a calculator for this exam, but NO OTHER RESOURCES; if I can determine you're cheating on this exam, you'll get a zero.
2. Except where indicated, merely finding the answer to a problem is not enough to receive full credit; you must show how you arrived at that answer.
3. Unless otherwise indicated, decimal approximations for a numerical answer accurate to 4 decimal places are acceptable.
4. Once you submit this exam through Canvas, it will factor into your grade in the manner described in the syllabus. NO TAKE-BACKS. Please indicate your understanding of the potential consequences of taking this exam by signing the statement below:

I understand that by taking this exam, I may lower my grade from what it was before the final.

Signed: \qquad

1) Given the simplified link diagram between webpages P_{1}, P_{2}, and P_{3} described by

- P_{1} links to P_{3}
- P_{2} links to P_{1} and P_{3}
- P_{3} doesn't link to anything,
a) Construct the link matrix A.
b) Find the normalized matrix B.
c) Calculate the PageRank matrix C, using $d=.85=17 / 20$.
d) Find all eigenvalues of C BY HAND (recall that $\lambda=1$ should always be an eigenvalue).
e) If $v=\left[\begin{array}{c}20 / 37 \\ 800 / 2109 \\ 1\end{array}\right]$ is an eigenvector for $\lambda=1$, find the PageRank of P_{2}.

2) Given the points $(-1,2),(0,8)$, and $(3,-1)$ in \mathbb{R}^{2}, find the best-fit line to the points by
a) Finding a system of linear equations that represents a "solution" to the problem,
b) Writing the problem as a matrix equation $A x=b$,
c) Finding the system $A^{t} A x=A^{t} b$, computing both $A^{t} A$ and $A^{t} b$,
d) Solving the system in c) BY HAND and producing the polynomial.
3) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation

$$
T\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
y-x \\
y \\
3 x+y
\end{array}\right]
$$

a) Determine a matrix representation A for T.
b) Find a basis for the column space of A, with justification as to why your answer is a basis.
c) Find an orthonormal basis for the column space of A (an answer for this will count as an answer for a)), showing all work used to constuct this basis.
4) Let \mathcal{S} denote the vector space of all sequences of real numbers. Let W be the subset of \mathcal{S} consisting of all convergent sequences. Show that W is a subspace of \mathcal{S}.
5) We know from work in class that the kernel of a linear transformation is a subspace. For ALL subspaces W of \mathbb{R}^{n}, show that there is a linear map $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ with $\operatorname{ker}(T)=W$. Hint: orthogonal projections.
6) Let $N \in M_{n}(\mathbb{R})$ be a nilpotent matrix. The nilpotency index of N is the smallest whole number k with $N^{k}=0$ (since N is nilpotent, we know such a k exists). Do your best to show that for ALL values of n and ALL nilpotent matrices $N \in M_{n}(\mathbb{R})$, the nilpotency index of N can never be greater than n.

