Winery 'aa Exam 2

1) a) addition and scalar multiplication
b) polynomials with cal coefficients
() The determinant is zero
2)

$$
\text { a) } \begin{aligned}
& {\left[\begin{array}{ccc}
\cos (-4 \pi / 3) & -\sin (4 \pi / 3) & 0 \\
\sin (-4 \pi / 3) & \cos (-4 \pi / 3) & 0 \\
0 & 0 & 1
\end{array}\right] } \\
&=\left[\begin{array}{ccc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

b) $\left[\begin{array}{lll}1 & 0 & 9 \\ 0 & 1 & 12 \\ 0 & 0 & 1\end{array}\right]$

$$
c)\left[\begin{array}{ccc}
1 / 4 & 0 & 6 \\
0 & 10 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

d) $C \cdot B \cdot A$
3) a) $\operatorname{det}(A)=-12-35=-47 \neq 0$

So A is invertible
b)

$$
\begin{aligned}
\text { Area } & =\left|\operatorname{det}\left[\begin{array}{cc}
-2 & 7 \\
5 & 6
\end{array}\right]\right| \\
& =\left|\operatorname{det}\left[\begin{array}{cc}
-2 & 5 \\
76
\end{array}\right]\right|=47
\end{aligned}
$$

4)

a)

$$
\begin{aligned}
& {\left[\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-2 & 1 \\
1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ll}
0 & 0 \\
3 & 4
\end{array}\right]}
\end{aligned}
$$

b) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad \begin{aligned} & a+4 c=1 \\ & -b+2 d=3\end{aligned} \quad$ not equal
C) From a), we know ω is nonempty.
write $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right],\left[\begin{array}{ll}x & y \\ z & w\end{array}\right] \in \omega$
then

$$
\begin{aligned}
& \text { then } \begin{array}{r}
a+4 c=-b+3 d, \\
\\
x+4 z=-y+3 w
\end{array} \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]+\left[\begin{array}{ll}
x & y \\
z & v
\end{array}\right]} \\
& =\left[\begin{array}{cc}
a+x & b+s \\
c+z & d+y
\end{array}\right] \\
& (a+x)+4(c+z) \\
& =a+4 c+x+4 z \\
& =-b+3 d-y+3 w \\
& =-(b+y)+3(d+w)
\end{aligned}
$$

Now if $k \in \mathbb{R}$,

$$
\begin{aligned}
k\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] & =\left[\begin{array}{ll}
k a & k b \\
k c & 4 d
\end{array}\right] \\
k a+4 k c & =k(a+4 c) \\
& =4(-b+3 d) \\
& =-(4 b)+3 k d
\end{aligned}
$$

So ω bs a subspace of $M_{2}(R)$.

51 Note $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in S$ since

$$
0.0-0=0
$$

Now take $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \in S$

$$
\begin{aligned}
& 3 \cdot\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right] \\
& 3 \cdot 3-3=6 \neq 0 \\
& \text { s. } 3\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \notin S
\end{aligned}
$$

and so S is not a subspace of \mathbb{R}^{3}

Note $\left.\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] \in\right]$ since

$$
0 \cdot 0-0=0
$$

The on'y possis'e subspaces of Ω^{3} are points, lines, planes, of \mathbb{R}^{3}.

Now take $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] \in S$. (S is not -point)
Also $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \in S$, so S is not a line.
Since $\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right] \notin S, S$ is not \mathbb{R}^{3}
But also $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right] \& S$
since $2.1-1=1 \neq 0$
so S is not a plane.

