Singular Value Decomposition

$$A \in M_{nxm}(IR), n \neq m$$

Find a way to decompose
 A like the case if $n = m$
for orthogonal diagonalization.
Step 1: Consider $A^{\pm}A \in M_m(IR)$,
a square matrix.

AtA

AtA is square, and symmetric Since $(A^{t}A)^{t} = A^{t}(A^{t})^{t}$ = AtA

Then AtA is orthogonally diagonalizable Even better: if T is an eigenvalue of AtA, then $\gamma \geq 0$

Why is 220?

Because if v is an eigenvector, then if we assume || J ||_2 =],

Matrix Square Roots IF D is a diagonal matrix and the entries of D are not negative, we set D'to be the matrix $\begin{bmatrix} 5 & 0 \\ 0 & 3b \end{bmatrix} = \begin{bmatrix} 0 & 5 & 0 \\ 0 & 5 & 0 \end{bmatrix}$ $= \begin{bmatrix} \sqrt{5} & 0 \end{bmatrix}$

for AtA, orthogonally diagonalize as $A^{t}A = S D S^{t}$. Then $(A^{\dagger}A)^{1/2} = S D^{1/2}S^{\dagger}$

Note: if O is not an eigenvalue for D, then D is actually invertible!

This will then give you that (AtA)" is invertible, which gives you that AtA is invertible.

with di, > 0,

IF D= [did, U] D dm

Singular Value Decomposition (SVD) (reduced)

Let A be an nxm matrix.

Then there is an mxm diagonal matrix D, an nxm matrix A with orthonormal columns, and an mxm orthogonal matrix V

with

Idea of SVD: Consider AtAEMM(IR). At A is orthogonally diagonalizable as $A^{t}A = v_{o} D_{o} v_{o}^{t}$ 50 $U_0^{\dagger} A^{\dagger} A U_0 = D_0$ By multiplying on left and right by a permutation matrix (always orthogonal), we may assume

where D₁ is a Kxk diagonal matrix with nonzero entries.

Split $v_0 = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$ where U, is mxk and

 $D_{0} = \begin{bmatrix} D_{1} & D \\ D & D \end{bmatrix}$ = Uot At Aus $= \begin{bmatrix} v_{1} \\ b_{1} \end{bmatrix} A^{t}A \begin{bmatrix} v_{1} & v_{2} \end{bmatrix}$ $= \begin{bmatrix} v_1^{\dagger} A v_1 & v_1^{\dagger} A^{\dagger} A v_2 \\ v_2^{\dagger} A^{\dagger} A v_1 & v_2^{\dagger} A^{\dagger} A v_2 \end{bmatrix}$ $D_1 = U_1^{\dagger} A^{\dagger} A U_1$

Let

$$\begin{aligned}
& \left[\begin{array}{c} W = A \cup_{1} D_{1} \\ Nxm nxh kxh \\ Then \\
& W^{\dagger} W = D_{1}^{-1/\lambda} \cup_{1}^{\dagger} A^{\dagger} A \cup_{1} D_{1}^{-1/\lambda} \\
& = D_{1}^{-1/\lambda} D_{1} D_{1}^{-1/\lambda} \\
& = T_{k} \\
\end{aligned}$$
So W has orthonormal columns.
Observe : $W D_{1}^{1/\lambda} = A \cup_{1} \end{aligned}$

Fix: $\hat{D} = \begin{bmatrix} D_1^{1/2} & D \end{bmatrix} (m_{X}m)$ $\begin{bmatrix} 6 & 0 \end{bmatrix}$

By Gram Schmidt, add Orthonormal nows to Vit to get v and orthonormal columns to W to get U.

FULL SVD

Let A be as nxm matrix. Then there is a nxm diagonal matrix D, an NXN orthogonal matrix U, and an mam orthogonal Matrix V with

A = UDV

Example 1.

Let $A = \begin{bmatrix} 1 & 2 & 5 & 8 \\ -9 & 3 & 1 & 0 \end{bmatrix}$

AE Maxy (IR)

Want: Singular value decomposition for A.

Use Wolfram Alphal

Idra: to compress an imaye, given by an $N \times M$ matrix, perform the Singular value de composition, throw away "unimportant" rows from the diagonal matrix. This reduces the size of the jmage 1

Announcements

1) HW & clarification - find the Full SVD (this is what WolFran Alpha does)

Singular Values

These are the eigenvalues of $(A^{t}A)^{1/2} =$ the diagonal entries of $\hat{D} =$ the diagonal entries of D = the diagonal

Principal Component Analysis (PCA)

We've already tried to fit polynomials to data. What if we try to

Easiest example: circle

Ellipsoids
ellipse:
$$\frac{x^{a}}{a^{a}} + \frac{y^{a}}{b^{a}} = 1$$

major + minor axes associated
to x=0 and y=0
In higher dimensions, we have
cllipsoids:
 $\frac{x^{a}}{a^{a}} + \frac{x^{a}}{a^{a}} + \dots + \frac{x^{a}}{a^{a}_{u}} = 1$
axes associated +0 all
but one coordinate equalling
Zero:

Idea: (PCA) picks out the axes of the ellipse. 1St principal component = longest axis 20% 11 11 = next-longest axis and so on

From SVD A=UDV (full SVD) Score matrix T= UD 1 st principal component= 1st column of T $|| || = 2^{n^2} \text{ (olum) of } T$ 2~~~

and so on

The first column is sometimes called the principal component.

Example 1:
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Find the principal component of A.
Singular Value Decomposition
of A:
 $A = U DV (Full SVD)$
Where
 $U = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$
 $D = \begin{bmatrix} 03 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} V = \begin{bmatrix} \frac{1}{15} & \sqrt{5} \\ -\frac{1}{15} & \sqrt{5} \\ \frac{1}{15} & \frac{1}{15} & \frac{1}{15} \end{bmatrix}$

Score matrix: T=UD $= \frac{1}{52} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 53 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ $= \frac{1}{52} \begin{bmatrix} \sqrt{3} & -1 & 0 \\ \sqrt{3} & 1 & 0 \end{bmatrix}$ $= \begin{bmatrix} \sqrt{3}/2 & -\frac{1}{\sqrt{3}} & 0 \\ \sqrt{3}/2 & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$ Principal component. [3/2]

Permutation Matrices

These are orthogonal matrices that can change the order of components in a vector while preserving the value of the components. Convention. In is a permutation Matrix

Example 2: (16w dimensions)

N=2 There are two permutation matrices, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ N=3 There are six permutation matrices, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$

•

Example 3: $D = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \end{bmatrix}$

he can rearrange the diagonal by

 $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $= \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right) \left[\begin{array}{c} 0 \\ 2 \\ 0 \end{array} \right]$ $- \left[\begin{array}{c} 2 \\ 0 \end{array} \right]$