Singular Value Decomposition

$$
A \in M_{n \times m}(\mathbb{R}), n \neq n
$$

Find a way to decompose A like the case if $n=m$ for orthogonal diagonal ization.

Step 1: Consider $A^{t} A \in M_{m}(\mathbb{R})$, a square matrix.
$A^{t} A$
$A^{t} A$ is square, and symmetric
since $\left(A^{t} A\right)^{t}=A^{t}\left(A^{t}\right)^{t}$

$$
=A^{t} A
$$

Then $A^{t} A$ is orthogonally diagonalizable!

Even better: if λ is an eigenvalue of $A^{t} A$, then

$$
\lambda \geq 0
$$

Why is $\lambda \geq 0$?
Because if v is an eigenvector, then if we assume $\|v\|_{2}=1$,

$$
\begin{aligned}
\lambda & =\lambda\|v\|_{2}^{2} \\
& =\lambda v \cdot v \\
& =\left(A^{t} A v\right) \cdot v \\
& =\left(v^{t} A^{t}\right) A v \\
& =(A v) t \cdot v \\
& =A v \cdot A v \\
& \geq 0
\end{aligned}
$$

Matrix Square Roots

If D is a diagonal matrix and the entries of D are not negative, we set $D^{1 / 2}$ to be the matrix

$$
\begin{aligned}
\left(D^{1 / 2}\right)_{i, j} & =\left(D_{i, j}\right)^{1 / 2} \\
\text { i.e. } \quad\left[\begin{array}{cc}
5 & 0 \\
0 & 36
\end{array}\right]^{1 / 2} & =\left[\begin{array}{cc}
\sqrt{5} & 0 \\
0 & \sqrt{36}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sqrt{5} & 0 \\
0 & 6
\end{array}\right]
\end{aligned}
$$

For $A^{t} A$, orthogonally diagonalize as

$$
A^{t} A=S D S^{t}
$$

Then $\left(A^{t} A\right)^{1 / 2}=S D^{1 / 2} S^{t}$

Note: if O is not an eigencrave for D, then D is actually invertible!

If $D=\left[\begin{array}{ccc}d_{1} d_{2} & & 0 \\ 0 & d_{m}\end{array}\right]$
with $d_{i}>0$,

$$
D^{-1}=\left[\begin{array}{cccc}
\frac{1}{d_{1}} & \frac{1}{d_{2}} & & 0 \\
& 0 & \ddots & \frac{1}{d_{w}}
\end{array}\right]
$$

This will then give you that $\left(A^{t} A\right)^{1 / 2}$ is invertible, which gives you that $A^{t} A$ is invertible.
$\frac{\text { Singular Value Decomposition (SVD) }}{(\text { reduced })}$
Let A be an $n \times m$ matrix.

Then there is an $m \times m$ diagonal $\operatorname{matrix} \hat{D}$, an nom matrix \widehat{U} with orthonormal columns, and an mam orthogonal matrix \hat{v} with

$$
A=\hat{V} \hat{D}
$$

Idea of SVD:
Consider $A^{t} A \in M_{m}(\mathbb{R})$
$A^{t} A$ is orthogonally diagonalizable as

$$
A^{t} A=U_{0} D_{0} U_{0}^{t}
$$

so

$$
u_{0}^{t} A^{t} A u_{0}=D_{0}
$$

By multiplying on left and right by a permutation matrix (always orthogonal), we may assume

$$
D_{0}=\left[\begin{array}{ll}
D_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where D_{1} is a $k \times k$ diagonal matrix with nonzero entries.

Split $U_{0}=\left[\begin{array}{ll}U_{1} & U_{2}\end{array}\right]$
where U_{1} is $m \times k$ and

$$
\begin{aligned}
D_{0} & =\left[\begin{array}{ll}
D_{1} & 0 \\
0 & 0
\end{array}\right] \\
& =u_{0}^{t} A^{t} A v_{0} \\
& =\left[\begin{array}{l}
u_{1}^{t} \\
v_{2}^{t}
\end{array}\right] A^{t} A\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
u_{1}^{t} A^{t} A u_{1} & u_{1}^{t} A^{t} A v_{2} \\
u_{2}^{t} A^{t} A v_{1} & u_{2}^{t} A^{t} A v_{2}
\end{array}\right]
\end{aligned}
$$

with $D_{1}=U_{1}^{t} A^{t} A U_{1}$

Let

$$
W=A \sum_{n \times m} u_{n \times k} \underbrace{D_{1}^{-1 / 2}}_{k \times k}
$$

Then

$$
\begin{aligned}
\omega^{t} \omega & =D_{1}^{-1 / 2} u_{1}^{t} A^{t} A u_{1} D_{1}^{-1 / 2} \\
& =D_{1}^{-1 / 2} D_{1} D_{1}^{-1 / 2} \\
& =I_{k}
\end{aligned}
$$

So w has orthonormal columns.
Observe: $\omega D_{1}^{1 / 2}=A U_{1}$

Since $\omega D_{1}^{1 / 2}=A V_{1}$,
multiplying on the right by ut,

$$
\begin{aligned}
\omega D_{1}^{1 / 2} v_{1}^{t} & =A u_{1} v_{1}^{t} \\
& =A I_{m} \\
& =A
\end{aligned}
$$

Note: if $\operatorname{dim}(\operatorname{Ran}(A))=n$, then D_{1} is $n \times n$, so wed be done. But in general, this is not true

$$
\text { Fix: } \quad \hat{D}=\left[\begin{array}{cc}
D_{1}^{1 / 2} & 0 \\
0 & 0
\end{array}\right](m \times m)
$$

By Gram Schmidt, add orthonormal rows to $v_{1} t$ to get \hat{v} and orthonormal columns to w to get \hat{v}.

Full SVD
Let A be as $n \times m$ matrix. Then there is a $n \times m$ diagonal matrix D, an $n \times n$ orthogonal matrix U, and an $m \times m$ orthogonal matrix V with

$$
A=U D V
$$

Example 1:

$$
\begin{aligned}
& \text { Let } A=\left[\begin{array}{cccc}
1 & 2 & 5 & 8 \\
-9 & 3 & 1 & 0
\end{array}\right] \\
& A \in M_{2 \times 4}(\mathbb{R})
\end{aligned}
$$

Want: singular value decomposition for A.

Use Wolfram Alpha!

Idea: to compress an image, given by an $n \times m$ matrix, perform the Singular value de composition, throw away "unimportant" rows from the diagonal matrix.

This reduces the size of the image!

Announcements

1) HW 8 clarification - find the full SVD (this is what Wolfram Alpha does)

Singular Valves

These are the eigenvalues of

$$
\left(A^{t} A\right)^{1 / 2}=\text { the diagonal }
$$

entries of $\hat{D}=$ the diagonal entries of D

Principal Component Analysis ($P(A)$

- or -
"What does the SVD do?

We've already tried to fit polynomials to data. What if we try to fit equations that are not the graph of a function to the data?

Easiest example: circle

Picture - full sud
A is 2×2,

$$
A=U D V
$$

V,U orthogonal, D diagonal
If A is invertible, so is D.

Ellipsoids
ellipse: $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
major + minor axes associated
to $x=0$ and $y=0$
In higher dimensions, we have ellipsoids:

$$
\frac{x_{1}^{2}}{a_{1}^{2}}+\frac{x_{3}^{2}}{a_{2}^{2}}+\cdots+\frac{x_{u}^{2}}{a_{u}^{2}}=1
$$

axes associated to all but one coordinate equalling zero.

Idea: (P(A) picks out the axes of the ellipse.
(st principal component $=$ longest axis
$2^{n d} \quad 11 \quad 11=$ next-longest axis
and so on

From SVD
$A=U D V \quad(f u l l S V D)$

Score matrix $T=U D$
$1^{\text {st }}$ principal component $=1^{\text {st }}$ column of T
$2^{n \wedge} 1111=2^{n \lambda}$ colum of T
and so on
The first column is sometimes called the principal component.

Example 1: $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$
Find the principal component of A.
Singular Value Decomposition of A.

$$
A=U D V \quad \text { (full Svo) }
$$

where

$$
\begin{aligned}
& U=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \\
& D=\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right], V=\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \sqrt{\frac{2}{3}} & \frac{1}{\sqrt{6}} \\
-\frac{1}{\sqrt{\sqrt{2}}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]
\end{aligned}
$$

Score matrix

$$
\begin{aligned}
T & =U D \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& =\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
\sqrt{3} & -1 & 0 \\
\sqrt{3} & 1 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\sqrt{3} / 2 & -\frac{1}{\sqrt{2}} & 0 \\
\sqrt{3} / 2 & \frac{1}{\sqrt{2}} & 0
\end{array}\right]
\end{aligned}
$$

Principal component: $\left[\begin{array}{l}\sqrt{3 / 2} \\ \sqrt{3 / 2}\end{array}\right]$

Permutation Matrices

These are orthogonal matrices that can change the order of components in a vector while preserving the value of the components.

Convention: In is a permutation matrix

Example 2: (low dimensions)
$n=2$ There are two permutation matrices,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$n=3$ There are six permutation matrices,

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right],\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

In general, there are n ! permutation matrices in $M_{n}(\mathbb{R})$.

These are matrices with a single nonzero entry in every row and column, and the nonzero entry is al ways 1.

If you want to, say, make the $4^{\text {th }}$ coordinate move to the $2^{n d}$ coordinate, the entry 1 will occur in the (second row, fourth column) of the matrix.

Any such matrix is always orthogonal since: the columns are orthonormal.

To change the order of the diagonal entries on a diagonal $n \times n$ matrix D : multiply

UDU' where u is a permutation matrix, chosen to effect the order you desire.

Example 3: $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$,
we can rearrange the diagonal by

$$
\begin{aligned}
& {\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]} \\
& =\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
2 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

