Math 412/512 Assignment 2

Due Monday, September 30

1) Let \mathbb{F} be a field and let V be a vector space over \mathbb{F}. Show that for all $w \in V,\left(-1_{\mathbb{F}}\right) \cdot w=-w$ where $1_{\mathbb{F}}$ is the multiplicative identity of \mathbb{F}.
2) (\#20, Section 1.3) Prove that if W is a subspace of a vector space V and $w_{1}, w_{2}, \ldots, w_{n}$ are in W, then $a_{1} w_{1}+a_{2} w_{2}+\cdots+a_{n} w_{n} \in W$ for any scalars $a_{1}, a_{2}, \ldots, a_{n}$. Conclude that $\operatorname{span}(W)=W$.
3) (\#13, Section 1.4) Show that if S_{1} and S_{2} are subsets of a vector space V such that $S_{1} \subseteq S_{2}$, then $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$. In particular, if $S_{1} \subseteq S_{2}$ and $\operatorname{span}\left(S_{1}\right)=V$, deduce that $\operatorname{span}\left(S_{2}\right)=V$.
4) (\#9, Section 1.5) Let u and v be distinct elements in a vector space V. Prove that $\{u, v\} \subset V$ is linearly dependent if and only if u or v is a multiple of the other.
5) Let $C(\mathbb{R})$ denote the vector space over \mathbb{R} of continuous functions from \mathbb{R} to \mathbb{R}. Fix $x \in \mathbb{R}$.
a) Let

$$
W_{x}=\{f \in C(\mathbb{R}) \mid f(x)=0\} .
$$

For example, $W_{\sqrt{2}}=\{f \in C(\mathbb{R}) \mid f(\sqrt{2})=0\}$. Show that W_{x} is a vector subspace of $C(\mathbb{R})$ for all $x \in \mathbb{R}$.
b) Choose $\alpha \in \mathbb{R}, \alpha \neq 0$, and let $W_{x, \alpha}=\{f \in C(\mathbb{R}) \mid f(x)=\alpha\}$. Is $W_{x, \alpha}$ a subspace of $C(\mathbb{R})$? Either prove or provide reasons for why not.
6) a) Let c_{00} be the subspace of all sequences of complex numbers that are "eventually zero." More precisely, a sequence of complex numbers $x=\left(x_{i}\right)_{i=1}^{\infty}$ is in c_{00} if and only if there is a natural number N so that $x_{n}=0$ for all $n \geq N$. Consider c_{00} as a vector space over \mathbb{C}.

Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be the set where, for each $i \in \mathbb{N}, e_{i}$ is the sequence in c_{00} given by

$$
\left(e_{i}\right)_{n}= \begin{cases}1 & n=i \\ 0 & n \neq i\end{cases}
$$

So e_{1} is the sequence with a 1 in the first entry and zeros in all other entries, e_{2} is the sequence with a 1 in the second entry and zeros in all other entries, etc. Show that $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ is a basis for c_{00}.
b) Recall the definition of $\ell_{\infty}(\mathbb{N})$ (as a vector space over \mathbb{C}) from the previous homework. If $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ is the set defined in part a) of this problem, is $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ either a linearly independent or spanning subset of $\ell_{\infty}(\mathbb{N})$? Prove that your assertion is correct.

Extra Credit: I will accept no written solutions. You must explain your proof to me in my office.

For a field F and a vector space V over F, the $\operatorname{Grassmannian} \operatorname{Gr}(k, V)$ is the collection of all k-dimensional linear subspaces of V. The order of $G r(k, V)$ is the number of distinct k-dimensional linear subspaces of V.
a) Determine, with proof, the number of distinct one-dimensional subspaces of \mathbb{Z}_{p}^{n}, i.e., find the order of $G r\left(1, \mathbb{Z}_{p}^{n}\right)$.
b) The cardinality of $\operatorname{Gr}\left(k, \mathbb{Z}_{p}^{n}\right)$ for $k \leq n$ is given by the formula $\frac{[n]_{p}!}{[n-k]_{p}![k]_{p}!}$ where for $m \in \mathbb{N}$,

$$
[m]_{p}=\frac{p^{m}-1}{p-1}
$$

and $[m]_{p}$! is defined by

$$
[m]_{p}!=[m]_{p} \cdot[m-1]_{p} \cdots[2]_{p} \cdot[1]_{p} .
$$

Prove this formula for $1<k<n$.
After you're done with this, in your own time, you should compute $\frac{[n]_{p}!}{[n-k]_{p}![k]_{p}!}$ for arbitrary p, n, and k, then take the limit as $p \rightarrow 1$. Ruminate on your answer and you may start to get some idea of what people mean by "the field with one element."

