Math 413/513 Assignment 3

Due Monday, October 14

1) (\#20, Section 1.6) Let V be a vector space having dimension n, and let S be a subset of V that generates V.
a) Prove that there is a subset of S that is a basis for V. (Be careful not to assume that S is finite.)
b) Prove that S contains at least n vectors.
2) (\#12, Section 6.1) Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal set in V, and let $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ be scalars. Prove that

$$
\left\|\sum_{i=1}^{k} a_{i} v_{i}\right\|^{2}=\sum_{i=1}^{k}\left|a_{i}^{2}\right|\left\|v_{i}\right\|^{2}
$$

3) Consider the vector space V over \mathbb{R} of all polynomials with real coefficients. Let W denote the subset of all polynomials with only even powers in their expression, i.e., $p(x) \in W$ if and only if $\exists k \in \mathbb{N}$ and scalars $a_{0}, a_{1}, a_{2}, \ldots, a_{k}$ such that

$$
p(x)=\sum_{n=0}^{k} a_{n} x^{2 n}
$$

Show that W is a subspace of V and find its dimension.
4) Prove the triangle inequality for complex numbers. NOTE: you are NOT allowed to assume any results on inner products to establish this.
5) In $C(\mathbb{R})$, the vector space over \mathbb{R} of continuous functions from \mathbb{R} to \mathbb{R}, let

$$
W=\left\{f \in C(\mathbb{R})\left|\int_{-\infty}^{\infty}\right| f(x) \mid d x<\infty\right\}
$$

where the integral used is the ordinary (improper) Riemann integral. Define, for $f \in W$,

$$
\|f\|_{1}=\int_{-\infty}^{\infty}|f(x)| d x
$$

Show that $\|\cdot\|_{1}$ gives a norm on W.
6) The Schroder-Bernstein Theorem: Assume there exists a 1-1 function $f: X \rightarrow Y$ and another 1-1 function $g: Y \rightarrow X$. Note that if $y \in f(X)$, i.e., $y \in \operatorname{ran}(f)$, there exists a unique $x \in X$ such that $f(x)=y$.

If we define $f^{-1}(y)=x$, then f^{-1} is a 1-1 function from $f(X)$ onto X. In a similar way, we can also define the 1-1 function $g^{-1}: g(Y) \rightarrow Y$. Follow the steps to show that there exists a 1-1, onto function $h: X \rightarrow Y$.
a) Let $x \in X$ be arbitrary. Let the chain C_{x} be the set consisting of all elements of the form

$$
\begin{equation*}
\ldots, f^{-1}\left(g^{-1}(x)\right), g^{-1}(x), x, f(x), g(f(x)), f(g(f(x))), \ldots \tag{1}
\end{equation*}
$$

Explain why the (distinct) number of elements to the left of x in the above chain may be zero, finite, or infinite.
b) FOR JUST THIS PART ONLY, let $X=\mathbb{Z}$ and $Y=2 \mathbb{Z}$, the even integers. Define $f: \mathbb{Z} \rightarrow 2 \mathbb{Z}, f(n)=4 n$ and $g: 2 \mathbb{Z} \rightarrow \mathbb{Z}, g(m)=m+3$. Calculate the left (inverses) part of a chain starting with $x=3$ and $x=31$.
c) Show that any two chains are either identical or completely disjoint.
d) Note that the terms of the chain in (1) alternate between elements of X and elements of Y. Given a chain C_{x}, we want to focus on $C_{x} \cap Y$, which is just the part of the chain that sits in Y.

Define the set A to be the union of all chains C_{x} satisfying $C_{x} \cap Y \subseteq f(X)$. Let B consist of the union of the remaining chains not in A. Show that any chain contained in B must be of the form

$$
y, g(y), f(g(y)), g(f(g(y))), \ldots
$$

where y is an element of Y that is not in $f(X)$.
e) Let $X_{1}=A \cap X, X_{2}=B \cap X, Y_{1}=A \cap Y$, and $Y_{2}=B \cap Y$. Show that f maps X_{1} onto Y_{1} and that g maps Y_{2} onto X_{2}. Use this information to show that X and Y have the same cardinality.

Extra Credit: Two norms $\|\cdot\|$ and $|\|\cdot\||$ on a vector space V over \mathbb{R} or \mathbb{C} are said to be equivalent if there are positive constants C and D such that, for all $x \in V$,

$$
C\|x\| \leq \mid\|x\|\|\leq D\| x \|
$$

Show that all p-norms on \mathbb{R}^{n} are equivalent for $1 \leq p \leq \infty$. You may also want to try to prove the harder fact that any two norms on \mathbb{R}^{n} are equivalent.

