Math 413/513 Assignment 4

Due Tuesday, November 12

1) For example a), prove that T is a linear transformation, find bases for $N(T)$ and $R(T)$, compute the nullity and rank, then determine whether T is one-to-one or onto. For example b), assume that T is linear and then find bases for $N(T)$ and $R(T)$, compute the nullity and rank, and determine whether T is one-to-one or onto. Your answers for b$)$ should depend on n !
a) $\left(\# 3\right.$, Section 2.1) $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $T\left(a_{1}, a_{2}\right)=\left(a_{1}+a_{2}, 0,2 a_{1}-\right.$ a_{2}).
b) $\left(\# 6\right.$, Section 2.1) $T: M_{n}(\mathbb{F}) \rightarrow \mathbb{F}$ defined by $T(A)=\operatorname{tr}(A)$ (see the book or the 10/3 notes for the definition of tr).
2) Let V be a vector space over \mathbb{F} and let $T: V \rightarrow V$ be linear. A subspace W of V is said to be T-invariant if $T(W) \subseteq W$.
a) (\#28, Section 2.1) Prove that the subspaces $\left\{0_{V}\right\}, V, R(T)$, and $N(T)$ are all T-invariant.
b) A T-invariant subspace W is said to be nontrivial if $W \neq\left\{0_{V}\right\}$ and $W \neq V$. Are the results from a) sufficient to show that every linear operator T from V to V has a nontrivial T-invariant subspace? Why or why not?
c) Consider \mathbb{R}^{2} as a vector space over \mathbb{R}. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, T((x, y))=$ (y, x). Find two distinct, nontrivial T-invariant subspaces. Check that your answers are correct.
d) Consider $C(\mathbb{R})$ as a vector space over \mathbb{R}. For $f, g \in C(\mathbb{R})$, define the linear $\operatorname{map} T_{f}: C(\mathbb{R}) \rightarrow C(\mathbb{R})$ by

$$
T_{f}(g)=g \circ f
$$

So $\left(T_{f}(g)\right)(x)=g(f(x))$ for all $x \in \mathbb{R}$. For every such f, find a nontrivial T_{f}-invariant subspace. Check that your answer is correct.
3) $\left(\# 5\right.$, Section 2.4) Let A be invertible. Prove that A^{t} is invertible and $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$.
4) We know from results in class that $M_{2}(\mathbb{R})$ and \mathbb{R}^{4} are isomorphic as real vector spaces. Now consider the explicit isomorphism T induced by

$$
e_{1} \mapsto e_{1,1}, \quad e_{2} \mapsto e_{2,1}, \quad e_{3} \mapsto e_{1,2}, \quad e_{4} \mapsto e_{2,2}
$$

We can define a linear map S_{A} from $M_{2}(\mathbb{R})$ to itself by taking $A, B \in M_{2}(\mathbb{R})$ and setting

$$
S_{A}(B)=A B
$$

Under the isomorphism T, S_{A} becomes a linear map from \mathbb{R}^{4} to \mathbb{R}^{4}, hence S_{A} is represented by an element of $M_{4}(\mathbb{R})$.
a) Find the matrix of S_{A} under this isomorphism, with respect to the standard basis, and check that your answer is correct.
b) Find an explicit form for all matrices in $M_{4}(\mathbb{R})$ that commute with the image of every S_{A} under T and show that the set of all such matrices is also isomorphic to \mathbb{R}^{4} as a real vector space.
5) Let \mathcal{B} be a basis for \mathbb{R} over \mathbb{Q} and let $a \in \mathbb{R}, a \neq 1$.
a) Show that $a \mathcal{B}=\{a y \mid y \in \mathcal{B}\}$ is a basis for \mathbb{R} over \mathbb{Q} for all $a \neq 0$.
b) For $x \in \mathbb{R}$ and $y \in \mathcal{B}$, we may define the function $q_{y}: \mathbb{R} \rightarrow \mathbb{Q}$ where

$$
q_{y}(x)=\text { the coefficient of } y \text { in the expansion of } x .
$$

We can then define $f: \mathbb{R} \rightarrow \mathbb{Q}$ by

$$
f(x)=\sum_{y \in \mathcal{B}} q_{y}(x) .
$$

Note the sum is well-defined since all but finitely many coefficients are zero. Considering f as a map between vector spaces over \mathbb{Q}, prove that f is linear.

Extra Credit:1) Determine whether $\ell_{1}(\mathbb{N})$ and $\ell_{2}(\mathbb{N})$ are isomorphic as real vector spaces.
2) Prove that, with \mathcal{B} as in $\# 5$, there exists $y \in \mathcal{B}$, ay $\notin \mathcal{B}$.

