Math 413/513 Assignment 4

Due Tuesday, November 12

1) For example a), prove that T is a linear transformation, find bases for N(T) and R(T), compute the nullity and rank, then determine whether T is one-to-one or onto. For example b), assume that T is linear and then find bases for N(T) and R(T), compute the nullity and rank, and determine whether T is one-to-one or onto. Your answers for b) should depend on n!

a) (#3, Section 2.1) $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (a_1 + a_2, 0, 2a_1 - a_2)$.

b) (#6, Section 2.1) $T: M_n(\mathbb{F}) \to \mathbb{F}$ defined by $T(A) = \operatorname{tr}(A)$ (see the book or the 10/3 notes for the definition of tr).

2) Let V be a vector space over \mathbb{F} and let $T: V \to V$ be linear. A subspace W of V is said to be *T*-invariant if $T(W) \subseteq W$.

a) (#28, Section 2.1) Prove that the subspaces $\{0_V\}$, V, R(T), and N(T) are all T-invariant.

b) A *T*-invariant subspace *W* is said to be *nontrivial* if $W \neq \{0_V\}$ and $W \neq V$. Are the results from a) sufficient to show that every linear operator *T* from *V* to *V* has a nontrivial *T*-invariant subspace? Why or why not?

c) Consider \mathbb{R}^2 as a vector space over \mathbb{R} . Let $T : \mathbb{R}^2 \to \mathbb{R}^2$, T((x, y)) = (y, x). Find two distinct, nontrivial *T*-invariant subspaces. Check that your answers are correct.

d) Consider $C(\mathbb{R})$ as a vector space over \mathbb{R} . For $f, g \in C(\mathbb{R})$, define the linear map $T_f : C(\mathbb{R}) \to C(\mathbb{R})$ by

$$T_f(g) = g \circ f.$$

So $(T_f(g))(x) = g(f(x))$ for all $x \in \mathbb{R}$. For every such f, find a nontrivial T_f -invariant subspace. Check that your answer is correct.

3) (#5, Section 2.4) Let A be invertible. Prove that A^t is invertible and $(A^t)^{-1} = (A^{-1})^t$.

4) We know from results in class that $M_2(\mathbb{R})$ and \mathbb{R}^4 are isomorphic as real vector spaces. Now consider the explicit isomorphism T induced by

$$e_1 \mapsto e_{1,1}, e_2 \mapsto e_{2,1}, e_3 \mapsto e_{1,2}, e_4 \mapsto e_{2,2}.$$

We can define a linear map S_A from $M_2(\mathbb{R})$ to itself by taking $A, B \in M_2(\mathbb{R})$ and setting

$$S_A(B) = AB.$$

Under the isomorphism T, S_A becomes a linear map from \mathbb{R}^4 to \mathbb{R}^4 , hence S_A is represented by an element of $M_4(\mathbb{R})$.

a) Find the matrix of S_A under this isomorphism, with respect to the standard basis, and check that your answer is correct.

b) Find an explicit form for all matrices in $M_4(\mathbb{R})$ that commute with the image of every S_A under T and show that the set of all such matrices is also isomorphic to \mathbb{R}^4 as a real vector space.

5) Let \mathcal{B} be a basis for \mathbb{R} over \mathbb{Q} and let $a \in \mathbb{R}, a \neq 1$.

a) Show that $a\mathcal{B} = \{ay \mid y \in \mathcal{B}\}\$ is a basis for \mathbb{R} over \mathbb{Q} for all $a \neq 0$.

b) For $x \in \mathbb{R}$ and $y \in \mathcal{B}$, we may define the function $q_y : \mathbb{R} \to \mathbb{Q}$ where

 $q_y(x)$ = the coefficient of y in the expansion of x.

We can then define $f : \mathbb{R} \to \mathbb{Q}$ by

$$f(x) = \sum_{y \in \mathcal{B}} q_y(x).$$

Note the sum is well-defined since all but finitely many coefficients are zero. Considering f as a map between vector spaces over \mathbb{Q} , prove that f is linear.

Extra Credit:1) Determine whether $\ell_1(\mathbb{N})$ and $\ell_2(\mathbb{N})$ are isomorphic as real vector spaces.

2) Prove that, with \mathcal{B} as in #5, there exists $y \in \mathcal{B}$, $ay \notin \mathcal{B}$.