Math 413/513 Assignment 5

Due Tuesday, November 19

1) (\#10, Section 2.5) Prove that if A and B are similar $n \times n$ matrices, then $\operatorname{tr}(A)=\operatorname{tr}(B)$. Hint: Use Exercise 13 of Section 2.3.
2) (\#13, Section 2.5) Let V be a finite dimensional vector space over a field \mathbb{F}, and let $\beta=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an ordered basis for V. Let Q be an $n \times n$ invertible matrix with entries from \mathbb{F}. Define

$$
x_{j}^{\prime}=\sum_{i=1}^{n} Q_{i, j} x_{i} \text { for } 1 \leq j \leq n,
$$

and set $\beta^{\prime}=\left\{x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{n}^{\prime}\right\}$. Prove that β^{\prime} is a basis for V and hence that Q is the change of coordinate matrix changing β^{\prime}-coordinates into β coordinates.
3) a) Let $A \in M_{n}(\mathbb{C})$. Prove that if A is invertible, then A^{-1} is unique.
b) Given the matrix $A=\left[\begin{array}{ll}1 & 8 \\ 3 & 5 \\ 2 & 2\end{array}\right]$, find all 2×3 matrices $B \in M_{2 \times 3}(\mathbb{R})$ with $B A=I_{2}$.
4) (\#15, Section 4.3) Prove that if $A, B \in M_{n}(\mathbb{F})$ are similar, then $\operatorname{det}(A)=$ $\operatorname{det}(B)$.
5) (\#2, Section 5.1) For each of the following linear operators T on a vector space V and ordered bases β, compute $[T]_{\beta}$ and determine whether β is a basis consisting of eigenvectors for T.
a) $V=\mathbb{R}^{2}, T\binom{a}{b}=\binom{10 a-6 b}{17 a-10 b}$, and $\beta=\left\{\binom{1}{2},\binom{2}{3}\right\}$.
b) $V=\mathbb{R}^{3}, T\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\left(\begin{array}{c}3 a+2 b-2 c \\ -4 a-3 b+2 c \\ -c\end{array}\right)$, and $\beta=\left\{\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 2\end{array}\right)\right\}$
6) A linear transformation $T: V \rightarrow V$ where V is a finite-dimensional inner product space is called positive semi-definite if

$$
\langle T h, h\rangle \geq 0
$$

for all $h \in V$.
a) Prove that if $A \in M_{n}(\mathbb{C})$ is positive semi-definite with respect to the usual inner product and λ is an eigenvalue for A, then $\lambda \geq 0$.
b) If $A \in M_{2}(\mathbb{C})$ and A^{*} denotes the conjugate transpose of $A\left(\left(A^{*}\right)_{i, j}=\right.$ $\overline{A_{j, i}}$ for all $\left.1 \leq i, j \leq n\right)$, prove that $A^{*} A$ is positive semi-definite.

