Math 413/513 Assignment 6

Due Tuesday, December 3

1) Find the characteristic polynomial and the eigenvalues of the following matrices over \mathbb{C}.
a) $A=\left[\begin{array}{cc}-1 & 6 \\ 3 & 11\end{array}\right]$
b) $B=\left[\begin{array}{ccc}3 & 2 & 2 \\ 1 & 4 & 1 \\ -2 & -4 & -1\end{array}\right]$
2) Let $A \in M_{n}(\mathbb{C})$ and $\alpha \in \mathbb{C}$. Using the definition of the determinant given in class, prove that if B is the matrix obtained by multiplying a single row of A by α, then

$$
\operatorname{det}(B)=\alpha \operatorname{det}(A)
$$

3) (\#14, Section 5.1) For any square matrix A, prove that A and A^{t} have the same characteristic polynomial (and hence the same eigenvalues). You may assume that $A \in M_{n}(\mathbb{C})$ or $M_{n}(\mathbb{R})$.
4) a) If A and B are two similar $n \times n$ matrices, prove that A and B have the same characteristic polynomial, and hence, the same eigenvalues.
b) Show that if $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is a linear map, then the eigenvalues of $[T]_{\beta}$ and the eigenvalues of $[T]_{\gamma}$ are the same for any two ordered bases β, γ of \mathbb{C}^{n}. Conclude that the eigenvalues of a linear transformation are independent of the matrix form given by a choice of basis.
5) Let $A \in M_{n}(\mathbb{C})$ and suppose A is invertible. Note that zero is not an eigenvalue of A.
a) Prove that λ is an eigenvalue of A if and only if $1 / \lambda$ is an eigenvalue of A^{-1}.
b) Prove that A is diagonalizable if and only if A^{-1} is diagonalizable.
6) Let $A=\left[\begin{array}{ll}a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2}\end{array}\right] \in M_{2}(\mathbb{R})$. Define a map $H_{A}: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ by

$$
H_{A}(B)=\left[\begin{array}{ll}
a_{1,1} b_{1,1} & a_{1,2} b_{1,2} \\
a_{2,1} b_{2,1} & a_{2,2} b_{2,2}
\end{array}\right]
$$

for all $B=\left[\begin{array}{ll}b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2}\end{array}\right] \in M_{2}(\mathbb{R})$.
a) Prove that H_{A} is a linear map.
b) Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Find the eigenvalues of H_{A}.
c) (Extra Credit) Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and define

$$
\left\|H_{A}\right\|_{\infty}=\max _{B \in M_{n}(\mathbb{R}),\|B\|=1}\left\|H_{A}(B)\right\| .
$$

Prove that $\left\|H_{A}\right\|_{\infty}=\|A\|=(1+\sqrt{5}) / 2$ where $\|A\|$ is the matrix norm defined in the 11-11 notes. The number $(1+\sqrt{5}) / 2$ is the so-called golden ratio. I will not accept written solutions, you must present your solution to me in my office on the board.
7) Let A and B be self-adjoint matrices in $M_{n}(\mathbb{C})$.
a) By considering $n=2$, show that $A B$ need not be self-adjoint.
b) $(\# 4$, Section 6.4) Prove that $A B$ is self-adjoint if and only if $A B=B A$.
8) Let u be a unitary matrix in $M_{2}(\mathbb{R})$.
a) Prove that if $\left\{b_{1}, b_{2}\right\}$ is an orthonormal basis of \mathbb{R}^{2}, then $u\left(b_{2}\right)$ is determined up to a negative sign by $u\left(b_{1}\right)$.
b) Determine the matrix in the standard basis $\left\{e_{1}, e_{2}\right\}$ of every such u.
9) A matrix $A \in M_{n}(\mathbb{F})$ is said to be nilpotent if there exists $k \in \mathbb{N}$ with $A^{k}=0_{M_{n}(\mathbb{F})}$.
a) Prove that if $A \in M_{n}(\mathbb{C})$ is nilpotent, then $\lambda=0$ is the only eigenvalue of A.
b) If $\mathbb{F}=\mathbb{C}$ and A is both normal and nilpotent, show that $A=0_{M_{n}(\mathbb{C})}$.

