Math 413/513 Assignment 2

Due Thursday, September 25

1) (Problem 2.6) Is it possible that vectors v_{1}, v_{2}, v_{3} are linearly dependent, but the vectors $w_{1}=v_{1}+v_{2}, w_{2}=v_{2}+v_{3}$, and $w_{3}=v_{3}+v_{1}$ are linearly independent?
2) Show that if S_{1} and S_{2} are subsets of a vector space V such that $S_{1} \subseteq S_{2}$, then $\operatorname{span}\left(S_{1}\right) \subseteq \operatorname{span}\left(S_{2}\right)$. In particular, if $S_{1} \subseteq S_{2}$ and $\operatorname{span}\left(S_{1}\right)=V$, then $\operatorname{span}\left(S_{2}\right)=V$.
3) (Problem 3.4) Find 3×3 matrices representing the transformations of \mathbb{R}^{3} which
a) project every vector onto the $x y$-plane;
b) reflect every vector through the $x y$-plane;
c) rotate the $x y$-plane through 30°, leaving the z-axis alone.
4) (Problem 5.5) Find linear transformations $A, B: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that $A B=0$ but $B A \neq 0$. (Be sure to show your answer is correct.)
5) Let $A \in M_{2}(\mathbb{R})$.
a) Suppose $\exists x \in \mathbb{R}^{2}, x \neq \overrightarrow{0}, A x=\overrightarrow{0}$. Must there exist $y \in \mathbb{R}^{2}, y \neq \overrightarrow{0}$, such that $A^{t} y=\overrightarrow{0}$? Prove or exhibit a counterexample.
b) Let $x \in \mathbb{R}^{2}, x \neq \overrightarrow{0}$. Show that $A x=\overrightarrow{0}$ if and only if $A^{t} A x=\overrightarrow{0}$.

Extra Credit: I will accept no written solutions. You must explain your proof to me in my office.

Let \mathcal{B} be a basis for \mathbb{R} over \mathbb{Q} and let $a \in \mathbb{R}, a \neq 1$.
a) (5 points) Show that $a \mathcal{B}=\{a y \mid y \in \mathcal{B}\}$ is a basis for \mathbb{R} over \mathbb{Q} for all $a \neq 0$.
b) (5 points) For $x \in \mathbb{R}$ and $y \in \mathcal{B}$, we may define the function $q_{y}: \mathbb{R} \rightarrow \mathbb{Q}$ where

$$
q_{y}(x)=\text { the coefficient of } y \text { in the expansion of } x
$$

We can then define $f: \mathbb{R} \rightarrow \mathbb{Q}$ by

$$
f(x)=\sum_{y \in \mathcal{B}} q_{y}(x) .
$$

Note the sum is well-defined since all but finitely many coefficients are zero. Considering f as a map between vector spaces over \mathbb{Q}, prove that f is linear.
c) (many points) Prove that there exists $y \in \mathcal{B}$, $a y \notin \mathcal{B}$. Be warned: this problem is quite tricky!

