Math 413/513 Assignment 3

Due Tuesday, October 7

1) Tex up what was assigned to you.
2) (Exercise 5.6) Prove Theorem 5.1, i.e. prove that trace $(A B)=\operatorname{trace}(B A)$.
3) a) (Exercise 7.1) Let X and Y be subspaces of a vector space V. Prove that $X \cap Y$ is a subspace of V.
b) (Exercise 7.4) Let X and Y be subspaces of a vector space V. Using Exercise 7.3, show that $X \cup Y$ is a subspace if and only if $X \subseteq Y$ or $Y \subseteq X$.
c) (Exercise 7.5) What is the smallest subspace of the space of 4×4 matrices which contains all upper triangular matrices ($a_{j, k}=0$ for all $j>$ k) and all symmetric matrices $\left(A=A^{T}\right)$? What is the largest subspace contained in both of those subspaces? Make sure you prove that your answers actually are subspaces if we have not done so already.
4) Let $V=c_{0}(\mathbb{N})$, the vector space of all complex sequences that converge to zero. Recall the map $T: V \rightarrow V$ defined by

$$
T\left(\left(\alpha_{i}\right)_{i=1}^{\infty}\right)=\left(0, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right)
$$

for $\left(\alpha_{i}\right)_{i=1}^{\infty} \in V$.
a) Prove that T is left-invertible and exhibit the inverse.
b) Prove that T is not right-invertible. This shows that, unlike the finitedimensional case, left-invertibility does not imply right-invertibility in general.
c) Find a linear operator $T: V \rightarrow V$ that is right invertible but not left invertible. No proof required.
5) We know from results in class that $M_{2}(\mathbb{R})$ and \mathbb{R}^{4} are isomorphic as real vector spaces. Now consider the explicit isomorphism T induced by

$$
e_{1} \mapsto e_{1,1}, \quad e_{2} \mapsto e_{2,1}, \quad e_{3} \mapsto e_{1,2}, \quad e_{4} \mapsto e_{2,2} .
$$

We can define a linear map S_{A} from $M_{2}(\mathbb{R})$ to itself by taking $A, B \in M_{2}(\mathbb{R})$ and setting

$$
S_{A}(B)=A B
$$

Under the isomorphism T, S_{A} becomes a linear map from \mathbb{R}^{4} to \mathbb{R}^{4}, hence S_{A} is represented by an element of $M_{4}(\mathbb{R})$.
a) Find the matrix of S_{A} under this isomorphism, with respect to the standard basis, and check that your answer is correct.
b) Find an explicit form for all matrices in $M_{4}(\mathbb{R})$ that commute with the image of every S_{A} under T and show that the set of all such matrices is also isomorphic to \mathbb{R}^{4} as a real vector space.

Extra Credit: I will accept no written solutions. You must explain your proof to me in my office.

A matrix $A \in M_{n}(\mathbb{C})$ is nilpotent if $\exists k \in \mathbb{N}, A^{k}=0$, where A^{k} is A multiplied k times with itself. For example,

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

is a nilpotent matrix since $A^{2}=0$.
a) (5 points) Prove that there does not exist $A \in M_{2}(\mathbb{C})$ with $A^{3}=0$ but $A^{2} \neq 0$.
b) (5 points) For every $k \in \mathbb{N}, k \leq n$, prove that there exists a nilpotent matrix $A_{k} \in M_{n}(\mathbb{C})$ such that $A_{k}^{k}=0$ but $A_{k}^{k-1} \neq 0$.

