Math 413/513 Assignment 5

Due Tuesday, November 18

1) (Exercise 1.10, Chapter 4) Prove that the determinant of a matrix A is the product of its eigenvalues (counting multiplicities). Hint: first show that $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{n}-\lambda\right)$ where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are eigenvalues (counting multiplicities). Then compare the free terms (terms without λ) or plug in $\lambda=0$ to get the conclusion.
2) (Exercise 2.13, Chapter 4) a) Consider the transformation $T: M_{2}(\mathbb{C}) \rightarrow$ $M_{2}(\mathbb{C}), T(A)=A^{t}$. Find all its eigenvalues and eigenvectors. Is it possible to diagonalize this transformation? There is a Hint in the text.
b) Can you do the same problem, but in $M_{n}(\mathbb{C})$? If yes, prove it. If not, explain why not.
3) Let $A=\left[\begin{array}{ll}a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2}\end{array}\right] \in M_{2}(\mathbb{R})$. Define a map $H_{A}: M_{2}(\mathbb{R}) \rightarrow M_{2}(\mathbb{R})$ by

$$
H_{A}(B)=\left[\begin{array}{ll}
a_{1,1} b_{1,1} & a_{1,2} b_{1,2} \\
a_{2,1} b_{2,1} & a_{2,2} b_{2,2}
\end{array}\right]
$$

for all $B=\left[\begin{array}{ll}b_{1,1} & b_{1,2} \\ b_{2,1} & b_{2,2}\end{array}\right] \in M_{2}(\mathbb{R})$.
a) Prove that H_{A} is a linear map.
b) Let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$. Find the eigenvalues of H_{A}.
4) (Exercise 1.9, Chapter 5) Consider the space \mathbb{R}^{2} with the norm $\|\cdot\|_{p}$, introduced in Section 1.5. For $p=1,2, \infty$, draw the "unit ball" B_{p} in the norm $\|\cdot\|_{p}$:

$$
B_{p}:=\left\{\mathbf{x} \in \mathbb{R}^{2}:\|\mathbf{x}\|_{p} \leq 1\right\}
$$

Can you guess what the balls B_{p} for other p look like? Admonishment: No laughing at this question!
5) Let $C([0,1])$ be the vector space over \mathbb{R} of continuous functions from $[0,1]$ to \mathbb{R}. Define, for $f \in C([0,1])$,

$$
\|f\|_{1}=\int_{0}^{1}|f(x)| d x
$$

where the integral used is the ordinary Riemann integral. Show that $\|\cdot\|_{1}$ gives a norm on $C([0,1])$. You may make use of any properties of the integral that you learned in Calculus I.
6) Let V be a complex inner-product space.
a) Prove that if $S \subseteq V$, then $S \subseteq\left(S^{\perp}\right)^{\perp}$.
b) Prove that if V is finite-dimensional and W is a subspace of V, then $\left(W^{\perp}\right)^{\perp}=W$.
c) If $V=\ell_{2}(\mathbb{N})$, find a subspace W of $\ell_{2}(\mathbb{N})$ with W properly contained in $\left(W^{\perp}\right)^{\perp}$.
(Extra Credit) With the notation as in problem $\# 3$, let $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ and define

$$
\left\|H_{A}\right\|_{\infty}=\max _{B \in M_{2}(\mathbb{R}),\|B\|=1}\left\|H_{A}(B)\right\| .
$$

Compute $\left\|H_{A}\right\|_{\infty}$.

