1) $F i x A \in M_{n}(\mathbb{R})$

$$
\begin{gathered}
A O_{M_{n}(\mathbb{R})}=O_{m(R)}=O A_{M_{n}(\mathbb{R})} \\
\text { so } \quad O_{M_{n}(\mathbb{R})} \in W_{A}
\end{gathered}
$$

Now let $B, C \in \omega_{A}, \alpha \in \mathbb{R}$
Then $A B=B A, A C=C A$, so

$$
\begin{aligned}
& A(\alpha B+C) \\
& =A(\alpha B)+A C \\
& =\alpha A B+A C \\
& =\alpha B A+C A \\
& =(\alpha B) A+C A \\
& =(\alpha B+C)(A)
\end{aligned}
$$

Then $\alpha B+C \in W_{A}$
$\Rightarrow W_{A}$ is a subspace by the subspace test
2) Let $g, f, h \in F(\mathbb{R}), \quad \alpha \in \mathbb{R}$ Then

$$
\begin{aligned}
& T_{f}(\alpha g+h)(x) \\
& =((\alpha g+h) \circ f)(x) \\
& =(\alpha g+h)(f(x)) \\
& =(\alpha g)(f(x))+h(f(x)) \\
& =\alpha(g(f(x))+h(f(x)) \\
& =\alpha(g \circ f)(x)+(h \circ f)(x) \\
& =\alpha T_{f}(g)(x)+T_{f}(h)(x)
\end{aligned}
$$

and so T_{f} is linear
3) i) Suppose T is injuctive and B is linearly independent.

Let $x_{1},-, x_{n} \in B$ and
suppose $\mathcal{F} \alpha_{1,}, \alpha_{n} \in \mathbb{R}$

$$
\begin{aligned}
& \alpha_{T} T\left(x_{1}\right)+\alpha_{\alpha} T\left(x_{2}\right)+-+\alpha_{n} T\left(x_{n}\right) \\
& =\sum_{i=1}^{n} \alpha_{i} T\left(x_{i}\right)=0_{w}
\end{aligned}
$$

Then by linearity of T,

$$
\begin{aligned}
O_{w}=\sum_{i=1}^{n} \alpha_{i} T\left(x_{i}\right) & =\sum_{i=1}^{n} T\left(\alpha x_{i}\right) \\
& =T\left(\sum_{i=1}^{n} \alpha x_{i}\right)
\end{aligned}
$$

By injectivity of T,

$$
\sum_{i=1}^{n} \alpha_{i} x_{i}=o_{v}
$$

But since B is linearly independent,

$$
\alpha_{1}=\alpha_{2}=-=\alpha_{n}=0
$$

and so $T(B)$ is linearly independent
(i) Let $\left\{v_{1}, v_{2},-, v_{n}\right)$ be a basis.

Then if $x \in V, \exists \alpha_{1},-\alpha_{n} \in \mathbb{F}$

$$
x=\sum_{i=1}^{n} \alpha_{i} v_{i}
$$

Now let $\beta_{i}=\frac{\alpha i}{i}$

$$
\text { Then } \begin{aligned}
& \sum_{i=1}^{n} \beta_{i} i v_{i} \\
& =\sum_{i=1}^{n} \frac{\alpha_{i}}{i} i \cdot v_{i} \\
& =\sum_{i=1}^{n} \alpha_{i} v_{i}=x
\end{aligned}
$$

Now suppose

$$
x=\sum_{i=1}^{n} \gamma_{i}\left(i v_{i}\right)
$$

for some $\gamma_{1}, r_{2},-, \gamma_{n} \in \mathbb{F}$
Then $x=\sum_{i=1}^{n}\left(\gamma_{i} \cdot i\right) v_{i}$
\Rightarrow by uniqueness,

$$
\gamma_{i} i=\alpha i
$$

and so,

$$
\gamma_{i}=\frac{\alpha_{i}}{i}=\beta i
$$

Therefore $\left\{v_{1}, 2 v_{1},-, v_{n}\right\}$ is a basis.

