Math 413/513 Final

Wednesday, December 18th

1) a) State the subspace test.
b) Define a linear map $T: V \rightarrow W$ where V and W are vector spaces over a field \mathbb{F}.
2) a) Let $A \in M_{n}(\mathbb{C})$ and let $\mathcal{S}=\left\{B \in M_{n}(\mathbb{C}) \mid B A=A B\right\}$. Prove that \mathcal{S} is a subspace of $M_{n}(\mathbb{C})$.
b) Define $T: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R}), T(A)=\frac{A-A^{t}}{2}$ where A^{t} is the transpose of A. Show that T is linear.
3) a) State the Rank/Nullity Theorem.
b) Define an eigenvalue for a linear map $T: V \rightarrow V$ where V is a finitedimensional vector space over \mathbb{C}.
4) a) Prove that if $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear and $n>m$, then T is not one-toone.
b) Define $T: M_{n}(\mathbb{R}) \rightarrow M_{n}(\mathbb{R}), T(A)=\frac{A-A^{t}}{2}$ where A^{t} is the transpose of A. From 2 b), this map is linear. Determine all eigenvalues of T, with proof.
5) Give the definition of the determinant of an $n \times n$ matrix $A=\left(a_{i, j}\right)_{i, j=1}^{n} \in$ $M_{n}(\mathbb{C})$
6) Prove that if $A=\left(a_{i, j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{C})$ and $B=\left(b_{i, j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{C})$ is obtained from A by interchanging two rows of A, then $\operatorname{det}(A)=-\operatorname{det}(B)$.
7) a) Define the characteristic polynomial of a matrix $A \in M_{n}(\mathbb{C})$.
b) Define what it means for a vector space V over a field \mathbb{F} to be infinitedimensional.
8) Do ONE of the following two problems. If you attempt both, I will grade the problem you do WORSE on.
a) Let $A \in M_{n}(\mathbb{C})$ be normal. Show that if $p(x)=\sum_{i=0}^{n} \alpha_{i} x^{i}$ is the characteristic polynomial of A, then $\sum_{i=0}^{n} \alpha_{i} A^{i}=0_{M_{n}(\mathbb{C})}$, where $A^{0}=I_{M_{n}(\mathbb{C})}$. BONUS: show this for any $A \in M_{n}(\mathbb{C})$, no assumption of normality.
-OR-
b) Let V be an infinite-dimensional vector space over a field \mathbb{F}. Show that $L(V)=\{T: V \rightarrow V \mid \mathrm{T}$ is linear $\}$ is also infinite-dimensional. No points for showing $L(V)$ is a vector space!
