Math 413/513 Midterm

IN-CLASS PORTION

Tuesday, October 22nd

1) a) (5 points) Define a vector space V over a field \mathbb{F}.
b) (4 points) For two different fields \mathbb{F}_{1} and \mathbb{F}_{2}, give an example of a vector space over \mathbb{F}_{1} and a vector space over \mathbb{F}_{2}. Be sure to state which field your examples are over.
2) a) (3 points) Define a subspace W of a vector space V over a field F.
b) (4 points) State the subspace test.
c) (5 points) Provide two distinct, proper, nonzero subspaces of \mathbb{R}^{4} over \mathbb{R}.
3) a) (4 points) Define what it means for a subset S of a vector space V over \mathbb{F} to be linearly independent over \mathbb{F}.
b) (3 points) Define a basis for a vector space V over a field \mathbb{F}.
c) (2 points) Define the dimension of a vector space V over a field \mathbb{F}.
d) (4 points) Give an example of an infinite dimensional vector space over \mathbb{R}.
4) a) (6 points) Define a norm on a vector space V over \mathbb{R} or \mathbb{C}.
b) (4 points) Give two norms on \mathbb{R}^{2}.
5) a) (7 points) Define an inner-product space V over \mathbb{R} or \mathbb{C}.
b) (4 points) Define an orthogonal set S in an inner-product space V.
c) (5 points) In general terms, describe what the Gram-Schmidt Theorem says. It is sufficient, but not necessary, to state the theorem.
6) (15 points) Let V be the vector space $C(\mathbb{R})$ of all continuous functions from \mathbb{R} to \mathbb{R}, considered as a vector space over \mathbb{R}. Let

$$
W=\left\{f \in C(\mathbb{R}) \mid f^{\prime}(x) \text { exists } \forall x \in \mathbb{R}\right\}
$$

where f^{\prime} is the ordinary derivative. Show that W is a subspace of V. You may assume the rules of differentiation.

Math 413/513 Midterm

TAKE-HOME PORTION

Due Thursday, October 31

GENERAL RULES: You may use your textbook and notes as resources, but no other texts and certainly NO PEOPLE other than yourself and NO INTERNET aside from the notes.

1) Let $V=\mathbb{R}^{2}$ as a vector space over \mathbb{R}. Consider the subset S of \mathbb{R}^{2} defined by

$$
S=\{(x, y):|x|=|y|\}
$$

a) Show that S is not a subspace of \mathbb{R}^{2}.
b) Prove that the intersection of S with any proper subspace of \mathbb{R}^{2} is a subspace of \mathbb{R}^{2}.
2) Recall the definitions of the norms $\|\cdot\|_{p}$ on \mathbb{R}^{n} for $1 \leq p<\infty$. For $v \in \mathbb{R}^{n}$, define

$$
\|v\|=\|v\|_{2}+\|v\|_{1} .
$$

a) Show that $\|\cdot\|$ is a norm on \mathbb{R}^{n} for all $n \geq 1$.
b) Prove that $\|\cdot\|$ is not induced by an inner product on \mathbb{R}^{n} for any $n>1$; i.e., prove that there exists no inner product $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{n} with $\sqrt{\langle v, v\rangle}=\|v\|$ for all $v \in \mathbb{R}^{n}$.
3) Let V be a finite-dimensional vector space of ODD dimension $n>2$ over \mathbb{R}. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be a basis for V over \mathbb{R}. Show that the set

$$
\left\{x_{1}+x_{2}, x_{2}+x_{3}, \ldots, x_{n-1}+x_{n}, x_{n}+x_{1}\right\}
$$

is also a basis for V over \mathbb{R}.
4) Consider the vector space \mathcal{P} over \mathbb{R} of all polynomials with real coefficients. If $p(x), q(x) \in \mathcal{P}$, define

$$
\langle p(x), q(x)\rangle=\int_{0}^{1} p(x) q(x) d x
$$

where the notation is the ordinary Riemann integral. If you don't remember how to integrate polynomials, write $p(x)=\sum_{k=0}^{n} \alpha_{k} x^{k}$ and $q(x)=\sum_{k=0}^{m} \beta_{k} x^{k}$. Then

$$
\langle p(x), q(x)\rangle=\sum_{k=0}^{n+m} \frac{\gamma_{k}}{k+1}
$$

where γ_{k} is the coefficient of x^{k} of the polynomial $p(x) q(x)$.
Let $S=\{1\} \subset \mathcal{P}$ and define the polynomials

$$
t_{n}(x)=(n+1) x^{n}-(n+2) x^{n+1}
$$

for $n \in \mathbb{N} \cup\{0\}$. Let

$$
\mathcal{B}=\left\{t_{n}(x)\right\}_{n=0}^{\infty} .
$$

a) Check that $\mathcal{B} \subseteq S^{\perp}$.
b) Prove that \mathcal{B} is a basis for S^{\perp}.

