Math 413/513 Midterm

IN-CLASS PORTION

Tuesday, October 22nd

1) a) (5 points) Define a vector space V over a field \mathbb{F} .

b) (4 points) For two different fields \mathbb{F}_1 and \mathbb{F}_2 , give an example of a vector space over \mathbb{F}_1 and a vector space over \mathbb{F}_2 . Be sure to state which field your examples are over.

2) a) (3 points) Define a subspace W of a vector space V over a field F.

b) (4 points) State the subspace test.

c) (5 points) Provide two distinct, proper, nonzero subspaces of \mathbb{R}^4 over $\mathbb{R}.$

3) a) (4 points) Define what it means for a subset S of a vector space V over \mathbb{F} to be linearly independent over \mathbb{F} .

b) (3 points) Define a basis for a vector space V over a field \mathbb{F} .

c) (2 points) Define the dimension of a vector space V over a field \mathbb{F} .

d) (4 points) Give an example of an infinite dimensional vector space over $\mathbb R.$

- **4)** a) (6 points) Define a norm on a vector space V over \mathbb{R} or \mathbb{C} .
 - b) (4 points) Give two norms on \mathbb{R}^2 .

5) a) (7 points) Define an inner-product space V over \mathbb{R} or \mathbb{C} .

b) (4 points) Define an orthogonal set S in an inner-product space V.

c) (5 points) In general terms, describe what the Gram-Schmidt Theorem says. It is sufficient, but not necessary, to state the theorem.

6) (15 points) Let V be the vector space $C(\mathbb{R})$ of all continuous functions from \mathbb{R} to \mathbb{R} , considered as a vector space over \mathbb{R} . Let

$$W = \{ f \in C(\mathbb{R}) | f'(x) \text{ exists } \forall x \in \mathbb{R} \}$$

where f' is the ordinary derivative. Show that W is a subspace of V. You may assume the rules of differentiation.

Math 413/513 Midterm

TAKE-HOME PORTION

Due Thursday, October 31

GENERAL RULES: You may use your textbook and notes as resources, but no other texts and certainly NO PEOPLE other than yourself and NO INTERNET aside from the notes.

1) Let $V = \mathbb{R}^2$ as a vector space over \mathbb{R} . Consider the subset S of \mathbb{R}^2 defined by

$$S = \{(x, y) : |x| = |y|\}$$

a) Show that S is not a subspace of \mathbb{R}^2 .

b) Prove that the intersection of S with any proper subspace of \mathbb{R}^2 is a subspace of \mathbb{R}^2 .

2) Recall the definitions of the norms $\|\cdot\|_p$ on \mathbb{R}^n for $1 \leq p < \infty$. For $v \in \mathbb{R}^n$, define

$$||v|| = ||v||_2 + ||v||_1.$$

a) Show that $\|\cdot\|$ is a norm on \mathbb{R}^n for all $n \ge 1$.

b) Prove that $\|\cdot\|$ is not induced by an inner product on \mathbb{R}^n for any n > 1; i.e., prove that there exists no inner product $\langle \cdot, \cdot \rangle$ on \mathbb{R}^n with $\sqrt{\langle v, v \rangle} = \|v\|$ for all $v \in \mathbb{R}^n$.

3) Let V be a finite-dimensional vector space of ODD dimension n > 2 over \mathbb{R} . Let $\{x_1, x_2, \ldots, x_n\}$ be a basis for V over \mathbb{R} . Show that the set

$$\{x_1 + x_2, x_2 + x_3, \dots, x_{n-1} + x_n, x_n + x_1\}$$

is also a basis for V over \mathbb{R} .

4) Consider the vector space \mathcal{P} over \mathbb{R} of all polynomials with real coefficients. If $p(x), q(x) \in \mathcal{P}$, define

$$\langle p(x), q(x) \rangle = \int_0^1 p(x)q(x) \ dx$$

where the notation is the ordinary Riemann integral. If you don't remember how to integrate polynomials, write $p(x) = \sum_{k=0}^{n} \alpha_k x^k$ and $q(x) = \sum_{k=0}^{m} \beta_k x^k$. Then

$$\langle p(x), q(x) \rangle = \sum_{k=0}^{n+m} \frac{\gamma_k}{k+1}$$

where γ_k is the coefficient of x^k of the polynomial p(x)q(x).

Let $S = \{1\} \subset \mathcal{P}$ and define the polynomials

$$t_n(x) = (n+1)x^n - (n+2)x^{n+1}$$

for $n \in \mathbb{N} \cup \{0\}$. Let

$$\mathcal{B} = \{t_n(x)\}_{n=0}^{\infty}.$$

- a) Check that $\mathcal{B} \subseteq S^{\perp}$.
- b) Prove that \mathcal{B} is a basis for S^{\perp} .