Math 413/513 Final

Wednesday, December 17th

1) a) (9 points) State the subspace test.
b) (6 points) Define a linear map $T: V \rightarrow W$ where V and W are vector spaces over a field \mathbb{F}.
2) a) (15 points) Let $\mathcal{S}=\left\{A=\left(a_{i, j}\right)_{i, j=1}^{n} \in M_{n}(\mathbb{C}) \mid a_{i, i}=0 \forall 1 \leq i \leq n\right\}$. Prove that \mathcal{S} is a subspace of $M_{n}(\mathbb{C})$.
b) (10 points) Define $T: \mathbb{C}^{n} \rightarrow \mathbb{C}, T\left(\left(\alpha_{i}\right)_{i=1}^{n}\right)=\alpha_{n}$. Show that T is linear.
3) a) (7 points) Define an orthogonal projection $P: V \rightarrow W$ where V is a finite-dimensional inner-product space and $W \subseteq V$ is a subspace.
b) (7 points) State what it means for $A \in M_{n}(\mathbb{C})$ to be diagonalizable.
4) a) (18 points) Prove that the orthogonal projection onto a subspace E of a finite-dimensional inner product space V is unique, i.e., does not depend on the choice of orthonormal basis.
b) (12 points) Let $A \in M_{n}(\mathbb{C})$ and let $B=A+A^{*}$. Prove that B is diagonalizable.
5) (7 points) Define an eigenvalue for a matrix $A \in M_{n}(\mathbb{C})$.
6) (30 points) Let $A, B \in M_{n}(\mathbb{C})$ be invertible and suppose $A B A=B$. Prove that if v is an eigenvector for A, then $B v$ is also an eigenvector for A.

EXTRA CREDIT: Show that A and B^{2} have a common eigenvector.
7) a) (5 points) Define a nilpotent matrix $A \in M_{n}(\mathbb{C})$.
b) (9 points) Define the adjoint of a linear map $T: V \rightarrow V$ where V is an inner product space.
8) (25 points each) Do ONE of the following two problems. If you attempt both, I will grade the problem you do WORSE on.
a) Let $A \in M_{n}(\mathbb{C})$ be nilpotent. Show that if $p(x)=\sum_{i=0}^{n} \alpha_{i} x^{i}$ is the characteristic polynomial of A, then $\sum_{i=0}^{n} \alpha_{i} A^{i}=0_{M_{n}(\mathbb{C})}$, where $A^{0}=I_{M_{n}(\mathbb{C})}$. -OR-
b) Define $T: \ell_{2}(\mathbb{N}) \rightarrow \ell_{2}(\mathbb{N})$,

$$
T\left(\left(\alpha_{n}\right)_{n=1}^{\infty}\right)=\left(\frac{\alpha_{n}}{n^{2}}\right)_{n=1}^{\infty}
$$

Determine T^{*} and show that $\operatorname{ker}\left(T^{*}\right)^{\perp} \neq \operatorname{ran}(T)$.

