Math 413/513 Midterm Part 1

Monday, October 22nd

1) a) Define a vector space V over a field \mathbb{F}.
2) a) Define a subspace W of a vector space V over a field F.
b) State the subspace test.
3) a) Define a basis for a vector space V over a field \mathbb{F}.
b) Define the dimension of a vector space V over a field \mathbb{F}.
c) Give an example of a four dimensional vector space over \mathbb{R}.
d) Give an example of an infinite dimensional vector space over \mathbb{R}.
4) a) For vector spaces V and W over a field \mathbb{F}, give the definition of a linear $\operatorname{map} T: V \rightarrow W$.
b) Provide a characterization of all linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}, considered as vector spaces over \mathbb{R}.
5) a) Define an isomorphism $T: V \rightarrow W$ where V and W are vector spaces over \mathbb{R}.
b) Give two isomorphic subpaces of $M_{2}(\mathbb{R})$.
6) Define $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$,

$$
T\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]\right)=\left[\begin{array}{c}
73 x-20 y-51 z \\
-20 x+208 y+204 z \\
-51 x+204 y+289 z
\end{array}\right]
$$

Prove that T is linear.

Math 413/513 Midterm Part 2

Wednesday, October 24th

1) Let $V=M_{n}(\mathbb{R})$, considered as a vector space over \mathbb{R}. Fix $A \in M_{n}(\mathbb{R})$ and let

$$
W_{A}=\left\{B \in M_{n}(\mathbb{R}) \mid A B=B A\right\}
$$

Show that W_{A} is a subspace of $M_{n}(\mathbb{R})$ for ALL choices of A.
2) Let $V=\mathcal{F}(\mathbb{R})$, the functions from \mathbb{R} to \mathbb{R}, considered as a vector space over \mathbb{R}. For $f, g \in \mathcal{F}(\mathbb{R})$, define $T_{f}: \mathcal{F}(\mathbb{R}) \rightarrow \mathcal{F}(\mathbb{R})$ by

$$
T_{f}(g)=g \circ f
$$

Prove that T_{f} is linear.
3) Do ONE of the following two questions. If you do both, I will grade the problem you do WORSE on.
a) Let V and W be vector spaces over \mathbb{R} and suppose $T: V \rightarrow W$ is an injective linear map. Prove that if \mathcal{B} is a linearly independent subset of V, then $T(\mathcal{B})$ is a linearly independent subset of W.
-OR-
b) Prove that if $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for a vector space V, then $\left\{v_{1}, 2 v_{2}, 3 v_{3}, \ldots, n v_{n}\right\}$ is also a basis for V.

