Math 473/573 Assignment 1

Due Thursday, January 23

1) For each matrix, use your favorite program (or your hands, if you are masochistic) to approximate the eigenvalues to 4 decimal places. Then determine whether the matrix is invertible and find an approximate formula for the inverse, if it exists.
a) $A=\left[\begin{array}{cc}3 & -5 \\ 2 & 1\end{array}\right]$
b) $B=\left[\begin{array}{ccc}0 & 1 & 4 \\ -8 & 6 & -2 \\ 7 & 0 & 2\end{array}\right]$
c) $C=\left[\begin{array}{cccc}-1 & 1 & 3 & 0 \\ 9 & 6 & 4 & 0 \\ -11 & 0 & 5 & 2 \\ 0 & -3 & 5 & 13\end{array}\right]$
2) Suppose you want to find a quadratic $y=a x^{2}+b x+c$ that interpolates

$$
(1,2),(2,0), \text { and }(3,1)
$$

a) By plugging each point into $y=a x^{2}+b x+c$, write out a system of three equations in three unknowns, in matrix form, that could be used to find a, b, and c.
b) The command "fliplr(vander(1:n))" in MatLab gives the $n \times n$ Vandermonde matrix associated to the values $x_{1}=1, x_{2}=2, \ldots, x_{n}=n$. Either use this or flat-out input the matrix to solve the system in part a) for a, b, and c. The Matlab command for solving $A x=b$ is $A \backslash b$ where x and b are column vectors- so be careful!
c) Graph the points and your quadratic on the same axis.
d) From class, we know that an $n \times n$ Vandermonde matrix is always invertible provided none of the $x_{i}^{\prime} s$ are repeated. Calculate the eigenvalues of
a 10×10 Vandermonde matrix A, corresponding to $x_{i}=i$ for $1 \leq i \leq n$, to four decimal places. What does this appear to tell you about the invertibility of A ?
e) Carry out the same experiment with 16 decimals places. What does this say about invertibility of A now?
3) Problem 1.1 in the text.
4) Problem 1.4 in the text.
5) Let A be a 137×5 complex matrix and suppose the columns of A, written as $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \in \mathbb{C}^{137}$ satisfy

$$
2 a_{1}-i a_{2}+15 a_{3}+(2+5 i) a_{4}-1001 a_{5}=\overrightarrow{0}
$$

where $\overrightarrow{0}$ is the zero vector in \mathbb{C}^{137}. Find a nonzero vector in $\operatorname{ker}(A)$.

